Energy spectra for one-dimensional quasiperiodic potentials: bandwidth, scaling, mapping and relation with local isomorphism

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1989 J. Phys. A: Math. Gen. 223267
(http://iopscience.iop.org/0305-4470/22/16/017)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 01/06/2010 at 06:58

Please note that terms and conditions apply.

Energy spectra for one-dimensional quasiperiodic potentials: bandwidth, scaling, mapping and relation with local isomorphism

Frank Wijnands
Institute for Theoretical Physics, University of Nijmegen, 6525 ED Nijmegen, The Netherlands

Received 6 March 1989

Abstract

Energy spectra for one-dimensional tight-binding models, with two types of quasiperiodic potentials, are studied, for which the incommensurability is characterised by quadratic irrationals. One is the step potential model, for which the structure is a generalised Fibonacci chain. For special structures, scaling properties of the spectrum are found numerically; a critical index δ for the total bandwidth is determined. After deriving recursion relations for the trace of transfer matrices, it is shown that generalised Fibonacci chains have the same energy spectrum if and only if they are locally isomorphic. The other potential is sinusoidal, for which the critical index δ is determined at the critical point.

1. Introduction

There has been much interest (Hofstadter 1976, Andre and Aubry 1980, Kohmoto et al 1983 and references therein, Thouless 1983, Ostlund et al 1983, Ostlund and Pandit 1984, Wilkinson 1987) in a tight-binding model with the Schrödinger equation:

$$
\begin{align*}
& \Psi_{m+1}+\Psi_{m-1}+V(m \omega) \Psi_{m}=E \Psi_{m} \tag{1}\\
& V(t+1)=V(t)
\end{align*}
$$

This is the Schrödinger equation for an electron on a one-dimensional lattice with a periodic site potential. Here m labels the lattice site and E is the energy. The relation between the nature of the wavefunctions and the character of the energy spectrum has been studied for a number of models. If ω is rational, say $\omega=p / q, p$ and q being relatively prime integers, the eigenspectrum consists of q bands and all eigenfunctions are extended. If ω is irrational, the question arises: what is the nature of the spectrum? The potential $V(m \omega)=\lambda \tan (2 \pi[m \omega-\nu])$ gives localised states for 'typical' irrational ω, and the bands for $\omega=p / q$ have widths proportional to $e^{-\gamma q}$, as $q \rightarrow \infty$ (Grempel et al 1982). An analytic weak potential $V(m \omega)$ gives extended states for almost every irrational ω (Bellissard et al 1983). Rational $\omega=p / q$ give bandwidths proportional to q^{-1}, as $q \rightarrow \infty$ (Kohmoto et al 1983).

Kohmoto et al (1983) studied the case of a step potential:

$$
V(t)= \begin{cases}V_{0} & \text { for }-\omega<t \leqslant-\omega^{3} \\ V_{1} & \text { for }-\omega^{3}<t \leqslant \omega^{2}\end{cases}
$$

where $\omega=(\sqrt{5}-1) / 2$ is the inverse of the golden mean.

Because the bandwidths were proportional to $q^{-(1+\delta)}, \delta>0$, the states were believed to be neither localised nor extended. This has been proven for certain values of $\left|V_{0}-V_{1}\right|$ (Casdagli 1986, Delyon and Petritis 1986, Suto 1987). Kohmoto et al (1983) analysed the problem also by means of a mapping problem, making use of a recursion relation for the traces of transfer matrices.

The case $V(t)=\lambda \cos (2 \pi t)$ has been studied extensively as well. With this choice of the potential, the model is self-dual, since the Fourier coefficients of the wavefunctions Ψ_{m} obey the same equation, with different coefficients, as the Ψ_{m}. For $\omega=$ ($\sqrt{5}-1$) $/ 2$, Kohmoto (1983) compared $\lambda=1.98,2.00$ and 2.02 . From the spectrum, the states turned out to be extended for $\lambda=1.98$, critical for $\lambda=2.00$ and localised for $\lambda=2.02$, in agreement with Andre and Aubry (1980) and Avron and Simon (1983).

Now $\omega=(\sqrt{5}-1) / 2$ belongs to the family of positive solutions of the following quadratic equation:

$$
\begin{equation*}
\phi^{2}+n \phi=1 \tag{2}
\end{equation*}
$$

with n a positive integer. Positive solutions are: $\phi=\left(\sqrt{\left(n^{2}+4\right)}-n\right) / 2$. These ϕ can be rewritten as a continued-fraction expansion:

$$
\begin{equation*}
\phi=1 /(n+1 /(n+\ldots) \ldots)) \tag{3}
\end{equation*}
$$

For $n=1, \phi$ is the inverse of the golden mean.
The purpose of this paper is twofold. The first aim is to treat the localisation problem for general n. For the step potential and for the potential $V(t)=\lambda \cos (2 \pi t)$, the values $n=1,2,3,4$ are studied. For each n, energy spectra for systematic commensurate approximants are calculated. The description of the models is given in § 2. Numerical results for the total bandwidth and for scaling properties are presented in §3. The second aim is to relate energy spectra of generalised Fibonacci chains (in particular, the step potential case) and the concept of local isomorphism (note that generalised Fibonacci chains can be considered as one-dimensional quasicrystals). Levine and Steinhardt (1986) argue that quasicrystals have the same diffraction pattern and the same free energy if and only if they belong to the same local isomorphism class. It will be studied whether generalised Fibonacci chains (not) belonging to the same local isomorphism class, have the same (a different) energy spectrum. Section 4 contains (the derivation of) recursion relations for the traces of transfer matrices, which will be useful in the following section. In § 5, for a given arbitrary generalised Fibonacci chain, we will study which set of chains belongs to the same local isomorphism class and which set of chains has the same energy spectrum as the given one. Comparison of the two sets yields the answer on the relation between energy spectra and local isomorphism.

2. Transfer matrix formulation of the model

First, write the Schrödinger equation (1) in terms of transfer matrices as
$\boldsymbol{M}(m \boldsymbol{m}) \theta_{m}=\theta_{m+1} \quad \boldsymbol{M}(t)=\left[\begin{array}{cc}E-V(t) & -1 \\ 1 & 0\end{array}\right] \quad \theta_{m}=\left[\begin{array}{c}\Psi_{m} \\ \Psi_{m-1}\end{array}\right]$.
Notice that the matrices $M(t)$ are periodic in t with period 1 and that $\operatorname{det} M(t)=1$. Lattice sites m and $m+k$ can be related by repeating the procedure given in (4):

$$
\begin{equation*}
M^{(k)}(m \phi) \theta_{m}=\theta_{m+k} \tag{5}
\end{equation*}
$$

where $M^{(k)}(t)$ is defined recursively by

$$
\begin{equation*}
M^{\left(k_{1}+k_{2}\right)}(t)=M^{\left(k_{1}\right)}\left(t+k_{2} \phi\right) M^{\left(k_{2}\right)}(t) \tag{6}
\end{equation*}
$$

and $M^{(1)}(t) \equiv M(t)$. Rational approximants can be achieved by cutting off the con-tinued-fraction expansion (3) after l steps:

$$
\begin{equation*}
\left.\phi_{l}=1 /\left(n_{1}+1 /\left(n_{2}+\ldots+1 / n_{l}\right) \ldots\right)\right) \quad n_{1}=\ldots=n_{1}=n . \tag{7}
\end{equation*}
$$

Equation (7) can be rewritten in the form: $\phi_{l}=q_{l-1} / q_{l}$, where q_{l} are generalised Fibonacci numbers; q_{l} obey the recursion relations

$$
\begin{equation*}
q_{i+1}=n q_{l}+q_{l-1} \quad q_{0}=1 \quad q_{1}=n . \tag{8}
\end{equation*}
$$

For these rational values $\phi_{l}=q_{l-1} / q_{l}$, energies are allowed (forbidden) if $\left|\operatorname{Tr}\left[M^{\left(q_{i}\right)}(t)\right]\right|$ is less than (greater than) two.

In working out the models for the two types of potentials, the further approach is different, so they will be treated separately.

2.1. The step potential

The model can be described as follows. The site potential $V(m \phi)$ can take two values: V_{0} and V_{1}. Consider a structure consisting of atoms of type A (then $V(m \phi)=V_{1}$) and of type B (then $\left.V(m \phi)=V_{0}\right)$ on sites $m(m=0,1,2, \ldots)$. For a generalised Fibonacci chain, the potential $V(m \phi)$ can be constructed as follows. We consider sequences of symbols A, B. Starting with sequence $S_{0}=B$ at site $m=0$ corresponding to $V_{0}, S_{1}=A B^{n-1}$ at sites $m=0, \ldots,(n-1)$ corresponding to $V_{1}, V_{0}, \ldots, V_{0}$, the juxtaposition rule is

$$
\begin{equation*}
S_{k+1}=S_{k}^{n} S_{k-1} \quad k \geqslant 1 . \tag{9}
\end{equation*}
$$

Note that the number of atoms after each step S_{k} is q_{k}, and the atoms are put on sites $m=0, \ldots,\left(q_{k}-1\right)$. A commensurate approximant is achieved by cutting off the construction after l steps and constructing a periodic structure with unit cell S_{l} at sites $m=0,1,2, \ldots ; \phi$ is replaced by ϕ_{l}. Energies are allowed if $\left|\operatorname{Tr}\left[M^{\left(q_{l}\right)}(0)\right]\right| \leqslant 2$ (for convenience, t is put equal to zero). $\operatorname{Tr}\left[M^{\left(q_{1}\right)}(0)\right]$ can be calculated by using a recursion relation for $M_{k} \equiv M^{\left(q_{k}\right)}(0)(k \geqslant 0)$, after defining
$M_{B}=\left[\begin{array}{cc}E-V_{0} & -1 \\ 1 & 0\end{array}\right] \quad M_{A}=\left[\begin{array}{cc}E-V_{1} & -1 \\ 1 & 0\end{array}\right]$
$M_{k+1}=M_{k-1} M_{k}^{n} \quad M_{0}=M_{B} \quad M_{1}=M_{B}^{n-1} M_{A} \quad k \geqslant 1$.
Proof. $\quad M_{0}$ corresponds to $S_{0}=B \rightarrow M_{0}=M_{B} . \quad M_{1}$ corresponds to $S_{1}=A B^{n-1} \rightarrow$ $M_{1}=M^{\left(q_{1}\right)}(0)=M^{(n)}(0)=M\left((n-1) \phi_{l}\right) \ldots M(0)=M_{B}^{n-1} M_{A} . \quad M_{2} \quad$ corresponds to $S_{2}=S_{1}^{n} S_{0} \rightarrow M_{2}=M^{\left(q_{2}\right)}(0)=M^{\left(q_{0}+n q_{1}\right)}(0)=M^{\left(q_{0}\right)}\left(n q_{1} \phi_{I}\right) M^{\left(n q_{1}\right)}(0)=M_{B}\left(M_{B}^{n-1} M_{A}\right)^{n}=$ $M_{0} M_{1}^{n}$. Equation (9) leads directly to (10) because M_{k} corresponds to the reverse of S_{k} for each k.

Note that (10) also holds for the incommensurate limit (then the proof goes with ϕ instead of ϕ_{l}). Equation (10) holds for general S_{0}, S_{1}, with M_{0}, M_{1} corresponding to the reverse of S_{0}, S_{1} respectively. Energies are allowed (forbidden) if $\left|\operatorname{Tr} M_{l}\right|$ is less than (greater than) two.

2.2. The sinusoidal potential

We now consider the potential $V(t)=\lambda \cos (2 \pi t)$. For rational approximants $\phi_{i}=$ $q_{i-1} / q_{t}, \operatorname{Tr}\left(M^{\left(q_{i}\right)}(t)\right)$ has to be calculated. Taking t equal to zero, $M^{\left(q_{l}\right)}(0)$ has the form

$$
M^{\left(q_{l}\right)}(0)=\prod_{m=1}^{q_{1}}\left[\begin{array}{cc}
E-\lambda \cos \left(2 \pi\left[q_{1}-m\right] \phi_{l}\right) & -1 \tag{11}\\
1 & 0
\end{array}\right] .
$$

3. Spectra and scaling

For the step potential and for a fixed value of n, the energy spectra can be calculated for various commensurate approximants $\phi_{1}=q_{1-1} / q_{1}$ with help of (10). In all calculations, $V_{0}=-V_{1}=0.6$ in (10).

Figure $1(a)$ shows the energy bands for $n=2, l=1,2,3$; and in figure $1(b)$ the middle bands for $l=3,4,5$ are plotted.

Figure 1. Allowed energies for the step potential, $n=2, V_{0}=-V_{1}=0.6$; (a) gives the bands for $l=1,2,3 ;(b)$ gives the middle bands for $l=3,4,5$.

Comparing $1(a)$ and $1(b)$, one sees that the spectrum for ϕ_{l} appears in the spectrum for ϕ_{l+2} in a rescaled version, given by the scaling parameter α. The greater the values of l, the more the scaling parameter α converges (for the middle bands and the middle gaps).

For $n=1$ and $n=3$, scaling is found by comparing ϕ_{l} and ϕ_{l+3} and for $n=2$ and $n=4, \phi_{l}$ and ϕ_{l+2} are compared. This is related to the fact that, for n odd, every third generalised Fibonacci number is even and, for n even, every second generalised Fibonacci number is even.

Table 1 shows the values of the scaling parameter α for $n=1,2,3,4 ; \alpha$ has been calculated by comparing values of l up to $l=21,17,13,11$ for $n=1,2,3,4$ respectively.

Table 1. Scaling parameter α and critical index δ of the step potential and sinusoidal potential for $n=1,2,3,4$.

	Step potential		Sinusoidal potential	
n	α	δ	α	δ
1	5.618 ± 0.008	0.354 ± 0.005	14.0 ± 0.1	1.00 ± 0.01
2	8.77 ± 0.05	0.349 ± 0.002	39.7 ± 0.2	1.00 ± 0.01
3	80.3 ± 0.5	0.340 ± 0.003	1280 ± 30	1.00 ± 0.01
4	47.3 ± 0.3	0.328 ± 0.002	950 ± 10	1.00 ± 0.01

For the sinusoidal potential, scaling is found at $\lambda=2.00$ but scaling does not appear at $\lambda=1.98$ and $\lambda=2.02$. Figure 2 shows the spectrum for $l=1,2,3$ (figure $2(a)$) and the middle bands for $l=3,4,5$ (figure $2(b)$) for $n=2$ and $\lambda=2.00$, the self-dual point. In table 1 the values of the scaling parameter α of the middle bands and middle gaps for $n=1,2,3,4$ are given. For $n=1,2,3,4$ values of l up to $l=21,10,7,6$ were compared respectively.

Another quantity is the total bandwidth B_{l} as a function of different approximants $\phi_{l}=q_{l-1} / q_{l}$ and fixed n. For the step potential, B_{l} is found numerically to go down as: $B_{l}=c\left[q_{l}\right]^{-\delta}$, as $q_{l} \rightarrow \infty$, in all cases $n=1,2,3,4$, each with its own value of c and δ. In the incommensurate limit, the wavefunctions seem to be critical: they are neither localised nor extended, according to Grempel et al (1982) and Kohmoto et al (1983). In table 1 , the values of δ, called the critical index of total bandwidth, are given for $n=1,2,3,4$.

For the sinusoidal potential, at $\lambda=2.00, B_{1}$ once again decreases as $B_{1}=c\left[q_{1}\right]^{-\delta}$, as $q_{1} \rightarrow \infty$, in all cases $n=1,2,3,4$. The values of δ are given in table 1 for $n=1,2$, 3, 4. Surprisingly, δ is the same for each $n=1,2,3,4$. All cases $n=1,2,3,4$ give

Figure 2, Allowed energies for the sinusoidal potential, $n=2, \lambda=2.00$; (a) shows the spectrum for $l=1,2,3 ;(b)$ shows the middle bands for $l=3,4,5$. Notice that the middle band for $l=3$ consists of two bands that touch each other.
the same picture for $\lambda=1.98$ and $\lambda=2.02: \log B_{l}$ goes down faster than linearly to zero as a function of l for $\lambda=2.02, \log B_{l}$ goes down slower than linearly to its asymptotic value as a function of l for $\lambda=1.98$, as $q_{l} \rightarrow \infty$.

4. Recursion relations

In order to treat the spectral problem for $n=1$, Kohmoto et al (1983) converted (10) into a recursion relation for $x_{k}=\operatorname{Tr}\left(M_{k}\right): x_{k+1}=x_{k-1} x_{k}-x_{k-2}$, and constructed a three-dimensional mapping operator T. If $\boldsymbol{r}_{k}=\left(x_{k}, x_{k-1}, x_{k-2}\right)$, then $\boldsymbol{r}_{k+1}=T \boldsymbol{r}_{k}=$ $\left(x_{k-1} x_{k}-x_{k-2}, x_{k}, x_{k-1}\right)$. Starting with $\left|x_{0}\right| \leqslant 2$ and $\left|x_{1}\right| \leqslant 2$, an energy has escaped, once $\left|x_{k}\right|$ and $\left|x_{k+1}\right|$ are greater than two. Gumbs and Ali (1988) derived similar recursion relations for $n=2,3$ and Holzer (1988a, b) derived recursion relations for general n. The author derived similar recursion relations for general n independently. Since they will be of use in $\S 5$, a short proof will follow below.

Taking (10) as the starting point, it holds that

$$
\begin{equation*}
M_{k+1}+\left[M_{k-2}\right]^{-1}=M_{k-1}\left[M_{k}\right]^{n}+\left[M_{k-1}\right]^{n}\left[M_{k}\right]^{-1} \tag{12}
\end{equation*}
$$

Using the relations:
$\operatorname{Tr}(A B)+\operatorname{Tr}\left(A B^{-1}\right)=\operatorname{Tr}(A) \operatorname{Tr}(B) \quad \operatorname{Tr}(A)=\operatorname{Tr}\left(A^{-1}\right) \quad$ if $\operatorname{det} A=\operatorname{det} B=1$
$\operatorname{Tr}(A B)=\operatorname{Tr}(B A) \quad$ for every matrix A, B
directly yields
$\operatorname{Tr}\left(M_{k-1}\left[M_{k}\right]^{m}\right)=\operatorname{Tr}\left(M_{k-1}\left[M_{k}\right]^{m-1}\right) \operatorname{Tr} M_{k}-\operatorname{Tr}\left(M_{k-1}\left[M_{k}\right]^{m-2}\right)$
$\operatorname{Tr}\left(\left[M_{k-1}\right]^{m}\left[M_{k}\right]^{-1}\right)=\operatorname{Tr}\left(\left[M_{k-1}\right]^{m-1}\left[M_{k}\right]^{-1}\right) \operatorname{Tr} M_{k-1}-\operatorname{Tr}\left(\left[M_{k-1}\right]^{m-2}\left[M_{k}\right]^{-1}\right.$
Defining
$x(k)=\operatorname{Tr}\left(M_{k}\right) \quad y(k, m)=\operatorname{Tr}\left(M_{k-1}\left[M_{k}\right]^{m}\right) \quad z(k, m)=\operatorname{Tr}\left(\left[M_{k-1}\right]^{m}\left[M_{k}\right]^{-1}\right)$
equations (12) and ($14 a, b$) can be rewritten as
$x(k+1)=y(k, n-1) x(k)-y(k, n-2)+z(k, n-1) x(k-1)-z(k, n-2)-x(k-2)$
$y(k, m)=y(k, m-1) x(k)-y(k, m-2)$
$z(k, m)=z(k, m-1) x(k-1)-z(k, m-2)$.
Substituting $m=n$ in the last relation and using $z(k, n)=x(k-2)$ yields: $x(k-2)=z(k$, $n-1) x(k-1)-z(k, n-2)$, so that the resulting recursion relations become

$$
\begin{align*}
& x(k+1)=y(k, n-1) x(k)-y(k, n-2) \tag{15a}\\
& y(k, m)=y(k, m-1) x(k)-y(k, m-2) \tag{15b}
\end{align*}
$$

with initial conditions: $x(1)=\operatorname{Tr}\left(M_{1}\right), x(0)=\operatorname{Tr}\left(M_{0}\right), y(0, n-1)=\operatorname{Tr}\left(M_{1}\left[M_{0}\right]^{-1}\right)$. With help of the relations $y(k, 0)=x(k-1), y(k,-1)=y(k-1, n-1)$, all $x(k)$ can be calculated.

Essentially, the recursion relations (15) are relations between variables of the form $x\left(k_{1}\right)$ and $y\left(k_{2}, n-1\right)$, as becomes clear by calculating the recursion relations for $n=1$, 2, 3 :

$$
\begin{array}{ll}
n=1: & x(k+1)=x(k-1) x(k)-x(k-2) \\
n=2: & x(k+1)=y(k, 1) x(k)-x(k-1) \\
& y(k, 1)=x(k-1) x(k)-y(k-1,1) \\
n=3: & x(k+1)=y(k, 2) x(k)-x(k-1) x(k)+y(k-1,2) \\
& y(k, 2)=x(k-1)[x(k)]^{2}-y(k-1,2) x(k)-x(k-1) . \tag{18}
\end{array}
$$

We define $y(k) \equiv y(k, n-1)$ and $r_{k} \equiv(x(k), x(k-1), y(k-1))$. Analogously to the $n=1$ case, a three-dimensional mapping operator T can be defined with $\boldsymbol{r}_{k+1}=T \boldsymbol{r}_{k}=$ $(x(k+1), x(k), y(k))$. The $x(k+1), y(k)$ are calculated according to (15). There exists an invariant:
$-4+x(k)^{2}+x(k-1)^{2}+y(k-1)^{2}-x(k) x(k-1) y(k-1)=\left(V_{1}-V_{0}\right)^{2}$
for each $k \geqslant 1$. The proof goes by induction to k. Therefore, for general n, the mapping is on a two-dimensional manifold.

5. Spectra and local isomorphism

Up to now, energy spectra were discussed in relation to the nature of the electronic states. Another question is whether there is a relation between energy spectra of generalised Fibonacci chains, and the concept of local isomorphism.

Definition. Two n-dimensional structures are locally isomorphic if and only if every sphere in one structure can be mapped on a sphere with the same radius and the same contents in the other structure by a translation and/or an orthogonal transformation.

For two generalised Fibonacci chains this means that two chains are locally isomorphic if and only if every sequence in one chain can be mapped on the same sequence in the other chain by a translation and/or an inversion.

Consider an arbitrary generalised Fibonacci chain, as in § 2:

$$
\begin{array}{ll}
S_{0}=A^{a_{1}} B^{b_{1}} \ldots A^{a_{n}} B^{b_{m}} & \left(a_{1}, \ldots, b_{m}=0,1, \ldots\right) \\
S_{1}=A^{c_{1}} B^{d_{1}} \ldots A^{c_{p}} B^{d_{r}} & \left(c_{1}, \ldots, d_{p}=0,1, \ldots\right) \tag{20}\\
S_{k+1}=S_{k}^{n} S_{k-1} \quad(k \geqslant 1) . &
\end{array}
$$

The infinite chain is referred to as $S_{\infty}=\lim _{k \rightarrow \infty} S_{k}$. According to $\S 2$, the energy spectrum for a commensurate approximant S_{l} consists of energies for which $\left|\operatorname{Tr} M_{l}\right| \leqslant 2$, where M_{l} is determined by the procedure:

$$
\begin{align*}
& M_{0}=M_{B}^{b_{B}} M_{A}^{a_{n \prime \prime}} \ldots M_{B}^{b_{1}} M_{A}^{a_{1}} \quad M_{1}=M_{B}^{d_{B}} M_{A}^{c_{n}} \ldots M_{B}^{d_{1}} M_{A}^{c_{1}} \tag{21}\\
& M_{k+1}=M_{k-1} M_{k}^{n} .
\end{align*}
$$

In the following, for a given chain S_{∞}, the set of chains will be determined, which is locally isomorphic to S_{∞}, and the set which has the same energy spectrum as S_{∞}. Comparison of the two sets will provide the relation between energy spectrum and local isomorphism.

5.1. Locally isomorphic structures

In order to determine all T_{∞} which are locally isomorphic to a given S_{∞}, two lemmas will be useful. First, some notation is introduced. With T_{∞}, a structure is meant which is constructed in the same way as S_{∞} (see equation (20)), but with ($\left.T_{0}, T_{1}\right) \neq\left(S_{0}, S_{1}\right)$. For given S_{k}, S_{k}^{r} means the reverse of S_{k} (for example: if $S_{k}=A^{a} B^{b}$, then $S_{k}^{r}=B^{b} A^{a}$). For given S_{k}, let E be a product of A atoms and B atoms. Then $E S_{k} E^{-1}$ is said to be a positive product if $E S_{k} E^{-1}$ does not contain A^{i} or B^{i} with $i<0$ (E^{-1} : if, for example, $E=A^{a} B^{b}$, then $E^{-1}=B^{-b} A^{-a}$). Note that E is not necessarily a positive product.

Lemma 5.1. For given S_{∞}, let T_{∞} be such that $T_{0}=E S_{0} E^{-1}, T_{1}=E S_{1} E^{-1}$ with the restriction on E, that T_{0}, T_{1} be positive products.

Then S_{∞} and T_{∞} are locally isomorphic and

$$
\begin{equation*}
T_{k}=E S_{k} E^{-1} \quad k \geqslant 0 \tag{22}
\end{equation*}
$$

Proof. (i) Equation (22) is evident for $k=0,1$.
(ii) Suppose (22) holds for $k-1, k$. Then $T_{k+1}=T_{k}^{n} T_{k-1}=\left(E S_{k} E^{-1}\right)^{n} E S_{k-1} E^{-1}=$ $E S_{k}^{n} S_{k-1} E^{-1}=E S_{k+1} E^{-1}$. Since S_{k} and T_{k} differ by the same set of finite sequences at the edges for each k, the two infinite sequences are locally isomorphic.

Lemma 5.2. For given S_{∞}, let T_{∞} be such that $T_{0}=S_{0}^{r}, T_{1}=S_{1}^{r}$. Then S_{∞} and T_{∞} are locally isomorphic and:

$$
\begin{array}{ll}
\left(\mathrm{S}_{0} S_{1}\right)^{-1} T_{k}^{\mathrm{r}}\left(S_{1} S_{0}\right)=S_{k} & k \text { even } \tag{23}\\
\left(S_{1} S_{0}\right)^{-1} T_{k}^{\ulcorner }\left(S_{0} S_{1}\right)=S_{k} & k \text { odd } .
\end{array}
$$

The rather lengthy proof is given in appendix 1 . Now all T_{∞} can be determined, which are locally isomorphic to a given S_{∞}.

Theorem 5.3. For given S_{∞}, the structures T_{∞} which are locally isomorphic to S_{∞} are of one of the following forms:
(a)

$$
\begin{equation*}
T_{0}=E S_{m} E^{-1}, T_{1}=E S_{m+1} E^{-1} \quad m \geqslant 0 \tag{24a}
\end{equation*}
$$

$T_{0}=E S_{m}^{\mathrm{r}} E^{-1}, T_{1}=E S_{m+1}^{\mathrm{r}} E^{-1} \quad m \geqslant 0$

$$
\begin{array}{ll}
S_{0}=E T_{m} E^{-1}, S_{1}=E T_{m+1} E^{-1} & m>0 \tag{b}\\
S_{0}=E T_{m}^{\mathrm{r}} E^{-1}, S_{1}=E T_{m+1}^{\mathrm{r}} E^{-1} & m>0
\end{array}
$$

with E an arbitrary product of A atoms and B atoms, such that T_{0}, T_{1} are positive products.

For the proof, see appendix 2.

5.2. Structures with the same energy spectrum

The next question is: for given S_{∞}, which T_{∞} have the same energy spectrum as S_{∞} ? The spectrum for S_{∞} consists of energies, for which $\left|\lim _{k \rightarrow \infty} x(k)\right| \leqslant 2$ (see § 2); $x(k)=\operatorname{Tr}\left(M_{k}\right)$ where M_{k} and S_{k} are related according to (20) and (21). The spectrum for T_{∞} consists of energies for which $\left|\lim _{k \rightarrow \infty} x^{\prime}(k)\right| \leqslant 2 ; x^{\prime}(k)=\operatorname{Tr}\left(M_{k}^{\prime}\right)$, where M_{k}^{\prime} and T_{k} are related according to (20) and (21). First, for given S_{∞}, the structures T_{∞} of form $(a)-(d)$ in theorem 5.3 will be proven to have the same spectrum as S_{∞}. The following lemma will be useful.

Lemma 5.4. If $x^{\prime}(0)=x(0), x^{\prime}(1)=x(1), y^{\prime}(0, n-1)=y(0, n-1)$, then S_{∞} and T_{∞} have the same energy spectrum.

Proof. According to the recursion relations (15), the starting conditions for $x(k)$ are $x(0), x(1), y(0, n-1)$; for $x^{\prime}(k)$ they are $x^{\prime}(0), x^{\prime}(1), y^{\prime}(0, n-1)$. If the starting conditions are the same, then $x^{\prime}(k)=x(k)$ for each k and $\lim _{k \rightarrow \infty} x^{\prime}(k)=\lim _{k \rightarrow \infty} x(k)$. Thus S_{∞} and T_{∞} have the same spectrum.

Theorem 5.5. For given $S_{\infty}: S_{\infty}$ and the locally isomorphic structures T_{∞} in (24) of theorem 5.3, have the same energy spectrum.

For the proof, see appendix 3.
The final step is to prove that the T_{∞} in (24) of theorem 5.3 are the only structures having the same energy spectrum as S_{∞}. Two lemmas will be useful.

Lemma 5.6. For arbitrary S_{l} and T_{k} (with corresponding $x(l)=\operatorname{Tr}\left(M_{l}\right), x^{\prime}(k)=\operatorname{Tr}\left(M_{k}^{\prime}\right)$ respectively) the energy spectrum is the same if and only if $x(l)=x^{\prime}(k)$.

Proof. The 'if' part is trivial.
For the 'only if' part: in order to get the same spectrum, S_{l} and T_{k} must contain the same number of atoms (since the number of bands equals the number of atoms), say s_{l}. Then $x(l)$ and $x^{\prime}(k)$ are both polynomials in E of order s_{l}. In order to have the same spectrum, $2 s_{l}$ points $(E, x(l)(E)),\left(E, x^{\prime}(k)(E)\right)$ must be the same. Since a polynomial of order s_{l} is completely determined by $s_{l}+1$ points and since $s_{l} \geqslant 1$, the polynomials $x(l)$ and $x^{\prime}(k)$ must be the same.

In order to formulate the following lemma, we introduce some notation. Let s_{k} be the number of atoms contained in S_{k}; so s_{0}, s_{1} is the number of atoms in S_{0}, S_{1} respectively and $s_{k+1}=n s_{k}+s_{k-1}$; note that $s_{k}=q_{k}$, defined in (8), if $s_{0}=1, s_{1}=n$. Similarly, s_{k}^{\prime} is the number of atoms contained in T_{k}. Let $a P(p)$ denote a polynomial of order p with highest-order coefficient a : $a P(p)=a E^{p}+0(<p)$.

Lemma 5.7. For S_{∞} and T_{∞} (with corresponding $x(k)=\operatorname{Tr}\left(M_{k}\right), x^{\prime}(k)=\operatorname{Tr}\left(M_{k}^{\prime}\right)$ respectively) with $s_{k}=s_{k}^{\prime}$ for each k, then it holds for each $k>1$:
(a) if $x^{\prime}(0)=x(0), x^{\prime}(1)=x(1), y^{\prime}(0, n-1)=y(0, n-1)-a_{-1} P\left(p_{-1}\right)$, then:
$x^{\prime}(k)-x(k)=a_{-1} q_{k-2} P\left(p_{-1}-s_{0}-s_{1}+s_{k}\right)$
$y^{\prime}(k-1, n-1)-y(k-1, n-1)=a_{-1}\left(q_{k-2}-q_{k-3}\right) P\left(p_{-1}-s_{0}-s_{1}+s_{k}-s_{k-1}\right)$
(b) if $y^{\prime}(0, n-1)=y(0, n-1), x^{\prime}(1)=x(1), x^{\prime}(0)=x(0)-a_{0} P\left(p_{0}\right)$, then:
$x^{\prime}(k)-x(k)=-a_{0} q_{k-2} P\left(p_{0}-s_{0}+s_{k}\right)$
$y^{\prime}(k-1, n-1)-y(k-1, n-1)=-a_{0}\left(q_{k-2}-q_{k-3}\right) P\left(p_{0}-s_{0}+s_{k}-s_{k-1}\right)$
(c) if $y^{\prime}(0, n-1)=y(0, n-1), x^{\prime}(0)=x(0), x^{\prime}(1)=x(1)-a_{1} P\left(p_{1}\right)$, then:
$x^{\prime}(k)-x(k)=-a_{1} q_{k-1} P\left(p_{1}-s_{1}+s_{k}\right)$
$y^{\prime}(k-1, n-1)-y(k-1, n-1)=-a_{1}\left(q_{k-1}-q_{k-2}\right) P\left(p_{1}-s_{1}+s_{k}-s_{k-1}\right)$.
For the proof, see appendix 4.

Now, for a given S_{∞}, the structures T_{∞} can be determined, which have the same spectrum as S_{∞}. In order to have the same energy spectrum for S_{∞} and T_{∞}, it must hold that $\lim _{k \rightarrow \infty} x(k)=\lim _{k \rightarrow x} x^{\prime}(k)$ with $x(k), x^{\prime}(k)$ being polynomials of order s_{k}, s_{k}^{\prime} respectively in E. Then there must be a $t \in \mathbb{Z}$, such that $\lim _{k \rightarrow \infty}\left[x^{\prime}(k)-x(k+t)\right]=0$. This means that $s_{k}^{\prime}=s_{k+t}$ for $\min (k, k+t) \geqslant 0$. Since $\lim _{k \rightarrow \infty} S_{k}=\lim _{k \rightarrow \infty} S_{k+t}$, we can start with $S_{0}, S_{1}, T_{0}, T_{1}$ such that $s_{0}=s_{0}^{\prime}, s_{1}=s_{1}^{\prime}$. We now assume (assumption 1) that, if an $M \in \mathbb{N}$ can be found such that $x^{\prime}(k)-x(k)=f(k) P\left(s_{k}-M\right)$ for each k, with $\lim _{k \rightarrow \infty} f(k) \neq 0$, then $\lim _{k \rightarrow \infty} x(k) \neq \lim _{k \rightarrow \infty} x^{\prime}(k)$.

Consider, for given S_{∞}, a chain T_{∞}, with $s_{k}=s_{k}^{\prime}$ for each k. Let $y^{\prime}(0, n-1)=$ $y(0, n-1)-a_{-1} P\left(p_{-1}\right), x^{\prime}(0)=x(0)-a_{0} P\left(p_{0}\right), x^{\prime}(1)=x(1)-a_{1} P\left(p_{1}\right)$. Then, according to lemma 5.7

$$
x^{\prime}(k)-x(k)=q_{k-2}\left[a_{-1} P\left(p_{-1}-s_{0}-s_{1}+s_{k}\right)-a_{0} P\left(p_{0}-s_{0}+s_{k}\right)\right]-q_{k-1} a_{1} P\left(p_{1}-s_{1}+s_{k}\right)
$$

where only the highest-order terms count. Then $x^{\prime}(k)-x(k)=f(k) P\left(\max \left[p_{-1}-s_{0}-s_{1}\right.\right.$, $\left.p_{0}-s_{0}, p_{1}-s_{1}\right]+s_{k}$). Now the question is, whether $\lim _{k \rightarrow \infty} f(k) \neq 0$. First note that, if we are in case $(a),(b)$ or (c) of lemma 5.7, then $\lim _{k \rightarrow \infty} f(k)=\infty$. For combinations of these cases, choose $S_{0}, S_{1}, T_{0}, T_{1}$ such that $S_{-2}, T_{-2}, S_{-1}, T_{-1}$ are positive products. Then the a_{-1} term does not provide the highest-order term: $p_{-1}-s_{0}-s_{1}<\min \left(p_{0}-s_{0}\right.$, $\left.p_{1}-s_{1}\right)$. Then $\lim _{k \rightarrow \infty} f(k)=0$ only if $p_{0}-s_{0}=p_{1}-s_{1}$ and if $\lim _{k \rightarrow \infty}\left[q_{k-2} a_{0}+q_{k-1} a_{1}\right]=$ $0 \rightarrow a_{1}=-\phi a_{0}$. If V_{0}, V_{1} are rational, then a_{0}, a_{1} are rational, and $\lim _{k \rightarrow \infty} f(k)=\infty$. For given C, D being products of M_{A} matrices and M_{B} matrices: if $\operatorname{Tr} C=\operatorname{Tr} D$, then $D=E C E^{-1}$ or $D=E C^{\gamma} E^{-1}$ with E being a product of M_{A} matrices and M_{B} matrices. Argument: write $D=P C Q$ (such P, Q can always be found). We now assume the following expression to hold (assumption 2): $\operatorname{Tr} D=\operatorname{Tr}(P C Q)=\operatorname{Tr}(C Q P) \neq \operatorname{Tr} C$ if $P \neq Q^{-1}$ since $\operatorname{Tr} C$ will then be a different polynomial in E than $\operatorname{Tr} D$. Analogously, after noting that $\operatorname{Tr} C=\operatorname{Tr}\left(C^{r}\right)$ due to theorem $5.5, \operatorname{Tr}\left(P C^{r} Q\right) \neq \operatorname{Tr} C$ if $P \neq Q^{-1}$ (this is made plausible below theorem 5.8).

Theorem 5.8. For rational V_{0}, V_{1}, for given S_{x} : the T_{∞} which have the same energy spectrum as S_{∞} are exactly the T_{∞} in (24) of theorem 5.3.

Proof. Suppose T_{∞} has the same energy spectrum as S_{∞}. Then T_{x} must be of one of the following forms, due to assumption 1 and 2:

$$
\begin{array}{ll}
T_{0}=E S_{m} E^{-1}, T_{1}=F S_{m+1} F^{-1} & m \geqslant 0 \\
T_{0}=E S_{m}^{r} E^{-1}, T_{1}=F S_{m+1}^{r} F^{-1} & m \geqslant 0 \\
S_{0}=E T_{m} E^{-1}, S_{1}=F T_{m+1} F^{-1} & m>0 \\
S_{0}=E T_{m}^{r} E^{-1}, S_{1}=F T_{m+1}^{r} F^{-1} & m>0 . \tag{d}
\end{array}
$$

The final step is to prove that $E=F$. The proof will be given for case (a); the proof for the other cases goes analogously. Define U_{x} by: $U_{0}=S_{m}, U_{1}=S_{m+1}, U_{k+1}=$ $U_{k}^{n} U_{k-1}$. Then $U_{\infty}=S_{\infty}$. Thus T_{∞} and U_{∞} must be proven to have the same spectrum, where $T_{0}=E U_{0} E^{-1}, T_{1}=F U_{1} F^{-1}$. Let $x(k)=\operatorname{Tr}\left(M_{k}\right)$ and $x^{\prime}(k)=\operatorname{Tr}\left(M_{k}^{\prime}\right)$ correspond to U_{k} and T_{k} respectively. Then $M_{0}^{\prime}=M_{E}^{-1} M_{0} M_{E}, M_{1}^{\prime}=M_{F}^{-1} M_{1} M_{F}$. Since then $x^{\prime}(0)=x(0), x^{\prime}(1)=x(1)$, it must hold that $y^{\prime}(0, n-1)=y(0, n-1)$, due to lemma 5.7. Thus $\operatorname{Tr}\left(M_{1}^{\prime}\left(M_{0}^{\prime}\right)^{-1}\right)=\operatorname{Tr}\left(M_{1} M_{0}^{-1}\right) \rightarrow \operatorname{Tr}\left(M_{F}^{-1} M_{1} M_{F} M_{E}^{-1} M_{0}^{-1} M_{E}\right)=\operatorname{Tr}\left(M_{1} M_{0}^{-1}\right)$. The same argument as in assumption 2 yields: $M_{E}=M_{F} \rightarrow E=F$.

The statement that the T_{∞} of form (a) have the same spectrum as S_{∞} according to theorem 5.5 completes the proof.

It can be proven that theorem 5.8 also holds $\left(\lim _{k \rightarrow \infty} f(k) \neq 0\right)$ for V_{0}, V_{1} not both rational, except for the following case (if it exists!).
(1) Let $s_{k}^{\prime}=s_{k+1}$ for each k, for certain t (otherwise S_{x} and T_{∞} will not have the same spectrum due to assumption 1);
(2) choose $S_{0}, S_{1}, T_{0}, T_{1}$ such that $t=0$ and $S_{-2}, T_{-2}, S_{-1}, T_{-1}$ are positive products;
(3) $a_{1}=-\phi a_{0}$ and $p_{0}-s_{0}=p_{1}-s_{1}$;
(4) for each k, S_{k} and T_{k} contain the same number of atoms of type A (thus also of type B, since $s_{k}=s_{k}^{\prime}$): suppose $s_{k}=s_{k}^{\prime} ; S_{k}, T_{k}$ contain A_{k}, A_{k}^{\prime} atoms of type A respectively, $A_{k} \neq A_{k}^{\prime}$. Then $x^{\prime}(k)-x(k)=\left(A_{k}^{\prime}-A_{k}\right)\left(V_{0}-V_{1}\right) P\left(s_{k}-1\right)$;
(5) for each k, S_{k} and T_{k} are of the form: $S_{k}=E A^{a_{1}} B^{b_{1}} \ldots A^{a_{j}} B^{b_{j}} E^{-1}, T_{k}=$ $F A^{c_{1}} B^{d_{1}} \ldots A^{c_{l}} B^{d_{j}} F^{-1}$ with $j=j^{\prime}$, where E, F are products of A atoms and B atoms: suppose $A_{k}=A_{k}^{\prime}, j \neq j^{\prime}$. Then $x^{\prime}(k)-x(k)=\left(j^{\prime}-j\right)\left(V_{0}-V_{1}\right)^{2} P\left(s_{k}-4\right)$.

Comparing theorems 5.3 and 5.8 leads to the conclusion that two generalised Fibonacci chains constructed by juxtaposition have the same energy spectrum if and only if they are locally isomorphic (except for the case mentioned below theorem 5.8, for which it is not known). The proof of theorem 5.3 shows that, if S_{∞} and T_{∞} are locally isomorphic, then there is a $m \in \mathbb{Z}$ such that the commensurate approximants T_{k} and S_{k+m} differ by a constant finite sequence at the edges for each k, or such that T_{k} and the reverse of S_{k+m} differ by a finite sequence for each k (constant for each even k, and constant for each odd k), for k large enough.

6. Conclusions

For the step potential, for which the system is critical in the incommensurate limit, and for the $\lambda=2$ case of the sinusoidal potential, a scaling parameter α and a critical index for the total bandwidth δ is determined for $n=1,2,3,4$ and the total bandwidth goes down as $c\left[q_{l}\right]^{-\delta}$, where q_{t} is the number of bands. For the step potential, recursion relations for general n have been derived to treat the spectral problem by means of a mapping problem. Generalised Fibonacci chains are found to have the same energy spectrum if and only if they are locally isomorphic (except for one case, for which it is not known). It has been shown how two locally isomorphic chains are related.

Acknowledgment

I would like to thank Dr T Janssen for very useful and inspiring discussions.

Appendix 1. Proof of lemma 5.2

Proof by induction. Define U_{∞} by: $U_{0}=S_{0}=T_{0}^{\imath}, U_{1}=S_{1}=T_{1}^{\mathfrak{\imath}}, U_{k+1}=U_{k-1} U_{k}^{n}$ (the juxtaposition rule for U_{k} is different from the rule for S_{k}, T_{k}).
Then
(i) $\left(S_{0} S_{1}\right)^{-1} U_{2}\left(S_{1} S_{0}\right)=S_{2}$
(ii) $\left(S_{1} S_{0}\right)^{-1} U_{3}\left(S_{0} S_{1}\right)=S_{3}$
(iii) $\left(S_{1} S_{0}\right)^{-1} U_{3} U_{2}=\left(S_{0} S_{1}\right)^{-1} U_{2} U_{3}$.

Proof by substituting $U_{2}=S_{0} S_{1}^{n}, \quad U_{3}=S_{1}\left[S_{0} S_{1}^{n}\right]^{n}$. Induction step; for k even: suppose $\left(S_{0} S_{1}\right)^{-1} U_{k-2}\left(S_{1} S_{0}\right)=S_{k-2},\left(S_{1} S_{0}\right)^{-1} U_{k-1}\left(S_{0} S_{1}\right)=S_{k-1},\left(S_{1} S_{0}\right)^{-1} U_{k-1} U_{k-2}=$ $\left(S_{0} S_{1}\right)^{-1} U_{k-2} U_{k-1}$. Then
(iv) $\left(S_{0} S_{1}\right)^{-1} U_{k}\left(S_{1} S_{0}\right)=S_{k}$
(v) $\left(S_{0} S_{1}\right)^{-1} U_{k} U_{k-1}=\left(S_{1} S_{0}\right)^{-1} U_{k-1} U_{k}$.

Proof by substituting $U_{k}=U_{k-2} U_{k-1}^{n}$ and using the induction assumptions.
Analogously one can prove, using the induction assumptions for odd k :
(vi) $\left(S_{1} S_{0}\right)^{-1} U_{k}\left(S_{0} S_{1}\right)=S_{k}$
(vii) $\left(S_{1} S_{0}\right)^{-1} U_{k} U_{k-1}=\left(S_{0} S_{1}\right)^{-1} U_{k-1} U_{k}$.

Relations (i)-(vii) lead to

$$
\begin{array}{ll}
\left(S_{0} S_{1}\right)^{-1} U_{k}\left(S_{1} S_{0}\right)=S_{k} & \text { for } k \text { even } \\
\left(S_{1} S_{0}\right)^{-1} U_{k}\left(S_{0} S_{1}\right)=S_{k} & \text { for } k \text { odd }
\end{array}
$$

The final step in the proof is made by noting that $U_{k}=T_{k}^{\mathrm{r}}, k \geqslant 0$. This leads directly to

$$
\begin{array}{ll}
\left(S_{0} S_{1}\right)^{-1} T_{k}^{r}\left(S_{1} S_{0}\right)=S_{k} & \text { for } k \text { even } \\
\left(S_{1} S_{0}\right)^{-1} T_{k}^{r}\left(S_{0} S_{1}\right)=S_{k} & \text { for } k \text { odd } .
\end{array}
$$

Appendix 2. Proof of theorem 5.3

For given S_{∞}, define U_{∞} by: $U_{0}=S_{m}, U_{1}=S_{m+1}, m \geqslant 0, U_{k+1}=U_{k}^{n} U_{k-1}$. Then $U_{k}=$ S_{k+m} for each k and $U_{\infty}=S_{\infty}$.
(a) Then T_{∞}, given by $T_{0}=E U_{0} E^{-1}=E S_{m} E^{-1}, T_{1}=E U_{1} E^{-1}=E S_{m+1} E^{-1}$, is locally isomorphic to S_{∞} according to lemma 5.1 and

$$
\begin{equation*}
T_{k}=E S_{k+m} E^{-1} \quad k \geqslant 0 \tag{A2.1}
\end{equation*}
$$

The only restriction on E is that T_{0}, T_{1} be positive products.
(b) Then T_{∞}, given by $T_{0}=E U_{0}^{\mathrm{r}} E^{-1}=E S_{m}^{\mathrm{r}} E^{-1}, T_{1}=E U_{1}^{\mathrm{r}} E^{-1}=E S_{m+1}^{\mathrm{r}} E^{-1}$, is locally isomorphic to S_{∞} according to lemmas 5.1, 5.2 and

$$
\begin{array}{ll}
\left(S_{m} S_{m+1}\right)^{-1} E^{\mathrm{r}} T_{k}^{\mathrm{r}}\left(E^{-1}\right)^{\mathrm{r}}\left(S_{m+1} S_{m}\right)=S_{k+m} & k \text { even } \\
\left(S_{m+1} S_{m}\right)^{-1} E^{\mathrm{r}} T_{k}^{\mathrm{r}}\left(E^{-1}\right)^{\mathrm{r}}\left(S_{m} S_{m+1}\right)=S_{k+m} & k \text { odd } \tag{A2.2}
\end{array}
$$

The restriction on E is that T_{0}, T_{1} be positive products.
(c) For given S_{∞} : if positive products T_{0}, T_{1} can be found such that $S_{0}=E T_{m} E^{-1}$, $S_{1}=E T_{m+1} E^{-1}$ for certain E and $m>0$, then S_{∞} and T_{∞} are locally isomorphic and

$$
\begin{equation*}
S_{k}=E T_{k+m} E^{-1} \quad k \geqslant 0, m>0 \tag{A2.3}
\end{equation*}
$$

(d) Analogously, for given S_{∞} : if positive products T_{0}, T_{1} can be found, such that $S_{0}=E T_{m}^{\mathrm{r}} E^{-1}, S_{1}=E T_{m+1}^{\tau} E^{-1}$ for certain E and $m>0$, then S_{∞} and T_{∞} are locally isomorphic and

$$
\begin{array}{ll}
\left(T_{m} T_{m+1}\right)^{-1} E^{\mathrm{r}} S_{k}^{\mathrm{r}}\left(E^{-1}\right)^{\mathrm{r}}\left(T_{m+1} T_{m}\right)=T_{k+m} & k \text { even } \\
\left(T_{m+1} T_{m}\right)^{-1} E^{\mathrm{r}} S_{k}^{\mathrm{r}}\left(E^{-1}\right)^{\mathrm{r}}\left(T_{m} T_{m+1}\right)=T_{k+m} & k \text { odd } \tag{A2.4}
\end{array}
$$

The next step is to prove that there are no other structures T_{∞}, which are locally isomorphic to a given S_{∞}.
(a) Without inversion. With help of the relation $S_{k-1}=S_{k}^{-n} S_{k+1}, S_{l}$ can also be defined for $l<0$, if S_{l} is a positive product. Let $p \in \mathbb{Z}$ be such that S_{l} is a positive product for $l \geqslant p$, and S_{p-1} is not. Take an arbitrary T_{∞} and write: $T_{1}=D S_{t+1} C$, where $t+1$ is the largest integer for which S_{t+1} is included in T_{1} (so C, D are positive products). If S_{p+1} is not included in T_{1}, then write $t=p$ (then C, D are not both positive products).

At first, sequences T_{k} and $E T_{k} E^{-1}(k \geqslant 0)$ will not be distinguished. Later on, this possibility of getting locally isomorphic chains (according to lemma 5.1) will be taken into account. Since we do not distinguish between T_{k} and $C T_{k} C^{-1}(k \geqslant 0)$ at this stage, write: $T_{1}=C D S_{t+1}$. Then $C D$ must be a product of sequences S_{t} and $S_{t+1}: T_{1}^{2}=$ $C D S_{t+1} C D S_{t+1}$ occurs in T_{∞}. Now S_{∞} can be considered as built up out of S_{t}, S_{t+1}, occurring as powers $\left(S_{t+1}\right)^{n},\left(S_{t+1}\right)^{n+1}, S_{t}$. Then $T_{1}=\left(S_{t+1}\right)^{\gamma}$ or $T_{1}=$ $\left(S_{t+1}\right)^{i_{1}} S_{t}\left(S_{t+1}\right)^{i_{2}} \ldots\left(S_{t+1}\right)^{i_{k-1}} S_{t}\left(S_{t+1}\right)^{i_{k}}$. Since $t+1$ is the largest integer for which S_{t+1} is included in T_{1}, it holds that

$$
\begin{equation*}
T_{1}=\left(S_{t+1}\right)^{\gamma} \quad 1 \leqslant \gamma \leqslant n \tag{A2.5}
\end{equation*}
$$

or

$$
T_{1}=\left(S_{t+1}\right)^{i_{1}} S_{t}\left(S_{t+1}\right)^{i_{2}} \quad i_{1} \leqslant n-1,1 \leqslant i_{2} \leqslant n .
$$

$n=1 . T_{1}=S_{t+1}$ or $T_{1}=S_{t} S_{t+1}$. Suppose $T_{1}=S_{t} S_{t+1}$. Since we do not distinguish between T_{k} and $S_{1}^{-1} T_{k} S_{t}(k \geqslant 0)$ at this stage, we may write: $T_{1}=S_{t}^{-1} S_{t} S_{\mathrm{t}+1} S_{\mathrm{t}}=S_{\mathrm{t}+1} S_{\mathrm{t}}=$ S_{t+2}. Due to the fact that $t+1$ is the largest integer for which S_{t+1} is included in T_{1}, it holds that $T_{1}=S_{t+1}$. The next step is to prove that $T_{0}=S_{t} . T_{1}^{2} T_{0} T_{1}^{2}=\left(S_{t+1}\right)^{2} T_{0}\left(S_{t+1}\right)^{2}$ occurs in T_{∞}. In order to be locally isomorphic to S_{∞}, it must hold that

$$
T_{0}=S_{1} \text { or } T_{0}=S_{t}\left(S_{t+1}\right)^{i_{1}} \ldots\left(S_{t+1}\right)_{k}^{i_{k}} S_{t} \quad i_{1}, \ldots, i_{k}=1,2 .
$$

In the latter case, $i_{1}=i_{k}=2$, because $T_{0} T_{1} T_{0}$ occurs in T_{∞}. Also $T_{0} T_{1}^{2} T_{0}$ occurs in T_{∞}, which means that $\left(S_{t+1}\right)^{2} S_{t}\left(S_{t+1}\right)^{2} S_{t}\left(S_{t+1}\right)^{2}$ occurs; this sequence does not occur in S_{∞}. So $T_{1}=S_{t+1}, T_{0}=S_{t}$.
$n>1$. Suppose $T_{1}=\left(S_{t+1}\right)^{i_{1}} S_{l}\left(S_{t+1}\right)^{i_{2}}$ (see (A2.5)). Now T_{1}^{n+1} occurs in T_{∞}. Since $n>1, S_{t}\left(S_{t+1}\right)^{\left(i_{1}+i_{2}\right)} S_{t}\left(S_{t+1}\right)^{\left(i_{1}+i_{2}\right)} S_{t}$ occurs. This sequence only occurs in S_{∞} when $i_{1}+i_{2}=n$. Write $T_{1}=\left(S_{t+1}\right)^{(n-i)} S_{t}\left(S_{t+1}\right)^{i}(i \geqslant 1)$. Since we do not distinguish between T_{k} and $\left(S_{t+1}\right)^{i} T_{k}\left(S_{t+1}\right)^{-i}(k \geqslant 0)$ at this stage, write $T_{1}=\left(S_{t+1}\right)^{n} S_{t}=S_{t+2}$. Since $t+1$ was the largest integer for which S_{t+1} is included in T_{1}, T_{1} must be $\left(S_{t+1}\right)^{\gamma}$, $1 \leqslant \gamma \leqslant n$. Now T_{1}^{n} occurs in T_{∞}. Since S_{t+1} occurs only as power $\left(S_{t+1}\right)^{n}$ or $\left(S_{t+1}\right)^{n+1}$ in S_{∞}, it must hold that $\gamma=1: T_{1}=S_{t+1}$. The next step is to prove that $T_{0}=S_{t}$. Now $T_{1}^{n+1} T_{0} T_{1}^{n}=\left(S_{t+1}\right)^{n+1} T_{0}\left(S_{t+1}\right)^{n}$ and $T_{1}^{n} T_{0} T_{1}^{n+1}=\left(S_{t+1}\right)^{n} T_{0}\left(S_{t+1}\right)^{n+1}$ occurs in T_{∞}, which yields: $T_{0}=S_{t}$ or $T_{0}=S_{t}\left(S_{t+1}\right)^{i_{1}} \ldots\left(S_{t+1}\right)^{i_{k}} S_{t} ; i_{1}=i_{k}=n ; i_{2}, \ldots, i_{k-1}=n$, $n+1$. In the latter case, make use of the fact that $\left(T_{1}^{n} T_{0}\right)^{n}$ occurs in T_{∞} and that, if $\left[\left(S_{t+1}\right)^{n+1} S_{t}\right]\left[\left(S_{t+1}\right)^{n} S_{t}\right]^{i}\left[\left(S_{t+1}\right)^{n+1} S_{t}\right]$ occurs in S_{∞}, then $i=n$ or $n-1$. This means that T_{0} must be of this kind

$$
\begin{gathered}
T_{0}=S_{t}\left[\left(S_{t+1}\right)^{n} S_{t}\right]^{\left(n-i-j_{0}\right)}\left[\left(S_{t+1}\right)^{n+1} S_{t}\right]\left[\left(S_{t+1}\right)^{n} S_{t}\right]^{j_{1}} \ldots\left[\left(S_{t+1}\right)^{n} S_{t}\right]_{s}^{j_{s}} \\
\times\left[\left(S_{t+1}\right)^{n+1} S_{t}\right]\left[\left(S_{t+1}\right)^{n} S_{t}\right]^{i}
\end{gathered}
$$

with $i \geqslant 1, j_{1}, \ldots, j_{s}=n, n-1$ and $j_{0}=1$, 2 . Now $T_{1}^{n+1} T_{0}$ occurs in T_{∞}. In order to be locally isomorphic to S_{∞}, it must hold that $n-i-j_{0}=n$ or $n-1 \rightarrow i \leqslant 0$. Since $i \geqslant 1$, T_{∞} and S_{∞} cannot be locally isomorphic. So $T_{1}=S_{t+1}, T_{0}=S_{t}$.

Combining these results with lemma 5.1 gives, as a conclusion, that the T_{∞} which are locally isomorphic to S_{∞}, without taking inversion into account, are of the form (A2.1) $(t \geqslant 0)$ or (A2.3) $(t<0)$.
(b) With inversion. Lemma 5.2 tells us that, with $U_{0}=S_{0}^{r}, U_{1}=S_{1}^{r}, U_{k+1}=U_{k}^{n} U_{k-1}$, every finite sequence in S_{x} occurs in the reverse of U_{∞} and vice versa. So the task is to search for T_{∞} such that every sequence in T_{∞} occurs in U_{∞} and vice versa. Part (a) of the proof showed that, in order to get locally isomorphic chains T_{∞} and U_{∞} without taking inversion into account, it must hold that $T_{0}=F U_{t} F^{-1}, T_{1}=F U_{t+1} F^{-1}$, which means that the T_{∞}, which are locally isomorphic to S_{∞}, taking inversion into account, are of the form (A2.2) or (A2.4).

Appendix 3. Proof of theorem 5.5

Suppose $T_{0}=E S_{t} E^{-1}, T_{1}=E S_{t+1} E^{-1}$; then we are in cases $(a)(t \geqslant 0)$ and (c) $(t<0)$ of theorem 5.3. Say $U_{0}=E S_{0} E^{-1}, U_{1}=E S_{1} E^{-1}, U_{k+1}=U_{k}^{n} U_{k-1}$. Then $U_{\infty}=T_{\infty}$, since $\lim _{k \rightarrow \infty} E S_{k} E^{-1}=\lim _{k \rightarrow \infty} E S_{k+t} E^{-1}$. So we have to prove that U_{∞} and S_{∞} have the same spectrum.

Let E, S_{k}, U_{k} correspond to $M_{E}, M_{k}, M_{k}^{\prime}$ respectively according to (20) and (21). Then $M_{0}^{\prime}=M_{E}^{-1} M_{0} M_{E}, M_{1}^{\prime}=M_{E}^{-1} M_{1} M_{E}$. With use of the relation $\operatorname{Tr}(C D)=\operatorname{Tr}(D C)$ for arbitrary C, D, this directly yields: $x^{\prime}(0)=x(0), x^{\prime}(1)=x(1), y^{\prime}(0, n-1)=$ $y(0, n-1)$. Using lemma $5.4, U_{\infty}$ and S_{∞} have the same spectrum, thus T_{∞} and S_{∞} have the same spectrum. Suppose $T_{0}=E S_{t}^{\ulcorner } E^{-1}, T_{1}=E S_{t+1}^{\ulcorner } E^{-1}$. Then we are in cases (b) $(t \geqslant 0)$ and $(d)(t<0)$ of theorem 5.3. Say $V_{0}=E^{-1} T_{0} E=S_{t}^{\Gamma}, V_{1}=E^{-1} T_{1} E=S_{t+1}^{r}$, $V_{k+1}=V_{k}^{n} V_{k-1}$. Then V_{∞} and T_{∞} have the same spectrum according to the proof above. So the next step is to prove that V_{∞} and S_{∞} have the same spectrum. Say $U_{0}=S_{1}$, $U_{1}=S_{t+1}, U_{k+1}=U_{k}^{n} U_{k-1}$. Then $U_{\infty}=S_{\infty}$. We have to prove that U_{∞} and V_{∞} have the same spectrum (note that $V_{0}=U_{0}^{\mathrm{r}}, V_{1}=U_{1}^{\mathrm{r}}$).

Let $\boldsymbol{M}_{k}, M_{k}^{\prime}$ correspond to U_{k}, V_{k} respectively. It must hold that: (1) $\operatorname{Tr}\left(M_{0}^{r}\right)=$ $\operatorname{Tr}\left(M_{0}\right)$, (2) $\operatorname{Tr}\left(M_{1}^{\mathrm{r}}\right)=\operatorname{Tr}\left(M_{1}\right)$, (3) $\operatorname{Tr}\left[M_{1}^{\mathrm{r}}\left(M_{0}^{\mathrm{F}}\right)^{-1}\right]=\operatorname{Tr}\left[M_{1} M_{0}^{-1}\right]$. The relations (1), (2), (3) hold if $\operatorname{Tr}(C)=\operatorname{Tr}\left(C^{r}\right)$ for arbitrary $C=M_{A}^{a_{1}} \ldots M_{B}^{b_{m \prime \prime}}\left(a_{1}, \ldots, b_{m} \in \mathbb{Z}\right)$. The proof goes by induction. First, $\operatorname{Tr}(C)=\operatorname{Tr}\left(C^{r}\right)$ for $C=M_{A}^{a_{1}} M_{B}^{b_{1}}, C=M_{A}^{a_{1}} M_{B}^{b_{1}} M_{A}^{a_{2}}, C=$ $M_{B}^{b_{1}} M_{A}^{a_{3}} M_{B}^{b_{2}}$ for all $a_{1}, a_{2}, b_{1}, b_{2} \in \mathbb{Z}$, by using (13). The induction step: suppose $\operatorname{Tr}\left(M_{A}^{a_{1}} \ldots M_{A}^{a_{m}}\right)=\operatorname{Tr}\left(M_{A}^{a_{m}} \ldots M_{A}^{a_{1}}\right)$. Then
$\operatorname{Tr}\left(M_{A}^{a_{1}} \ldots M_{A}^{a_{11}} M_{B}^{b_{m}}\right)$

$$
\begin{aligned}
& =\operatorname{Tr}\left(M_{A}^{a_{1}} \ldots M_{B}^{b_{m-1}}\right) \operatorname{Tr}\left(M_{A}^{a_{m}} M_{B}^{b_{m \prime \prime}}\right)-\operatorname{Tr}\left(M_{A}^{a_{1}} \ldots M_{B}^{\left(b_{m-1}-b_{m}\right)} M_{A}^{-a_{m \prime \prime}}\right) \\
& =\operatorname{Tr}\left(M_{B}^{b_{m},-1} \ldots M_{A}^{a_{1}}\right) \operatorname{Tr}\left(M_{B}^{b_{m}^{\prime \prime}} M_{A}^{a_{1 \prime \prime}}\right)-\operatorname{Tr}\left(M_{A}^{-a_{m}} M_{B}^{\left(b_{m-1}-b_{m}\right)} \ldots M_{A}^{a_{1}}\right) \\
& =\operatorname{Tr}\left(M_{B}^{b_{m}} M_{A}^{a_{m}} \ldots M_{A}^{a_{1}}\right)
\end{aligned}
$$

because of the induction assumption and with use of (13).

Appendix 4. Proof of lemma 5.7

First, note that $x^{\prime}(k)$ and $x(k)$ are polynomials with highest-order term $E^{s_{k}}$. The proof will be given for (25a). The other two cases go analogously. The cases $n=1$ and $n>1$ are treated separately. Suppose $x^{\prime}(0)=x(0), x^{\prime}(1)=x(1), y^{\prime}(0, n-1)=$ $y(0, n-1)-a_{-1} P\left(p_{-1}\right)$. The task will be to find the highest-order term of the difference polynomial $y^{\prime}(k-1, n-1)-y(k-1, n-1)$ and $x^{\prime}(k)-x(k)$. By 'lower-order terms' will be meant terms which do not contribute to the highest-order term.
$n=1$. For $n=1, y(0, n-1)=x(-1), y^{\prime}(0, n-1)=x^{\prime}(-1)$.

$$
\begin{aligned}
x^{\prime}(2) & =x^{\prime}(0) x^{\prime}(1)-x^{\prime}(-1) \\
& =x(0) x(1)-\left[x(-1)-a_{-1} P\left(p_{-1}\right)\right]=x(2)+a_{-1} P\left(p_{-1}\right) \\
x^{\prime}(3) & =x^{\prime}(1) x^{\prime}(2)-x^{\prime}(0)=x(1)\left[x(2)+a_{-1} P\left(p_{-1}\right)\right]-x(0) \\
& =x(3)+a_{-1} P\left(p_{-1}+s_{1}\right)=x(3)+a_{-1} P\left(p_{-1}-s_{0}-s_{1}+s_{3}\right) \\
x^{\prime}(4) & =x^{\prime}(2) x^{\prime}(3)-x^{\prime}(1)=\ldots=x(4)+a_{-1} P\left(p_{-1}-s_{0}-s_{1}+s_{4}\right) .
\end{aligned}
$$

The induction step: suppose (25a) holds for $k-1, k-2, k-3$. Then ($25 a$) also holds for k. Proof by using $x^{\prime}(k)=x^{\prime}(k-2) x^{\prime}(k-1)-x^{\prime}(k-3)$ and substituting the terms on the right-hand side with help of the induction assumptions.

$$
\begin{aligned}
& n>1 . \\
& \begin{aligned}
& y^{\prime}(1, n-1)= y^{\prime}(1, n-2) x^{\prime}(1)-y^{\prime}(1, n-3) \\
&= {\left[y^{\prime}(1,0) x^{\prime}(1)-y^{\prime}(1,-1)\right]\left[x^{\prime}(1)\right]^{n-2}+\text { lower-order terms } } \\
&= {\left[x^{\prime}(0) x^{\prime}(1)-y^{\prime}(0, n-1)\right]\left[x^{\prime}(1)\right]^{n-2}+\text { lower-order terms } } \\
&= y(1, n-1)+a_{-1} P\left(p_{-1}+(n-2) s_{1}\right) \\
& x^{\prime}(2)=y^{\prime}(1, n-1) x^{\prime}(1)-y^{\prime}(1, n-2) \\
&= x(2)+a_{-1} P\left(p_{-1}+(n-1) s_{1}\right) \\
&= x(2)+q_{0} a_{-1} P\left(p_{-1}-s_{0}-s_{1}+s_{2}\right) ; \\
& y^{\prime}(2, n-1)= y^{\prime}(2, n-2) x^{\prime}(2)-y^{\prime}(2, n-3) \\
&= {\left[x^{\prime}(1) x^{\prime}(2)-y^{\prime}(1, n-1)\right]\left[x^{\prime}(2)\right]^{n-2}+\text { lower-order terms } } \\
&= y(2, n-1)+a_{-1} P\left(p_{-1}+n s_{1}+(n-2) s_{2}\right) \\
&+(n-2) a_{-1} P\left(p_{-1}+n s_{1}+(n-2) s_{2}\right) \\
&= y(2, n-1)+\left(q_{1}-q_{0}\right) a_{-1} P\left(p_{-1}-s_{0}-s_{1}+s_{3}-s_{2}\right) ; \\
& x^{\prime}(3)=y^{\prime}(2,n-1) x^{\prime}(2)-y^{\prime}(2, n-2) \\
&= x(3)+q_{1} a_{-1} P\left(p_{-1}-s_{0}-s_{1}+s_{3}\right) .
\end{aligned}
\end{aligned}
$$

The induction step: suppose (25a) holds for $y(k-2, n-1), x(k-2), x(k-1)$. Then (25a) also holds for $y(k-1, n-1), x(k)$ by using the relations

$$
\begin{aligned}
& \begin{array}{l}
y^{\prime}(k-1, n-1)=y^{\prime}(k-1, n-2) x^{\prime}(k-1)-y^{\prime}(k-1, n-3) \\
\quad=\left[x^{\prime}(k-2) x^{\prime}(k-1)-y^{\prime}(k-2, n-1)\right]\left[x^{\prime}(k-1)\right]^{n-2}+\text { lower-order terms; }
\end{array} \\
& x^{\prime}(k)=y^{\prime}(k-1, n-1) x^{\prime}(k-1)-y^{\prime}(k-1, n-2)
\end{aligned}
$$

and using the induction assumptions.

References

Andre G and Aubry S 1980 Ann. Israel Phys. Soc. 3133
Avron J and Simon B 1983 Duke Math. J. 50369
Bellissard J, Lima R and Testard D 1983 Commun. Math. Phys. 88207
Casdagli M 1986 Commun. Math. Phys. 107295
Delyon F and Petritis D 1986 Commun. Math. Phys. 103441
Grempel D, Fishman S and Prange R 1982 Phys. Rev. Lett. 49833
Gumbs G and Ali M 1988 Phys. Rev. Lett. 601081
Hofstadter D 1976 Phys. Rev. B 142239
Holzer M 1988a Phys. Rev. B 381709
-_ 1988b Phys. Rev. B 385756
Kohmoto M 1983 Phys. Rev. Lett. 511198
Kohmoto M, Kadanoff L and Tang C 1983 Phys. Rev. Lett. 501870
Levine D and Steinhardt P 1986 Phys. Rev. B 34596
Ostlund S and Pandit R 1984 Phys. Rev. B 291394
Ostlund S, Pandit R, Rand D, Schellnhuber H and Siggia E 1983 Phys. Rev. Lett. 501873
Suto A 1987 Commun. Math. Phys. 111409
Thouless D 1983 Phys. Rev. B 284272
Wilkinson M 1987 J. Phys. A: Math. Gen. 204337

