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Energy spectra for one-dimensional quasiperiodic potentials: 
bandwidth, scaling, mapping and relation with local 
isomorphism 

Frank Wijnands 
Institute for Theoretical Physics, University of Nijmegen, 6525 ED Nijmegen, The 
Netherlands 

Received 6 March 1989 

Abstract. Energy spectra for one-dimensional tight-binding models, with two types of 
quasiperiodic potentials, are studied, for which the incommensurability is characterised 
by quadratic irrationals. One is the step potential model, for which the structure is a 
generalised Fibonacci chain. For special structures, scaling properties of the spectrum are 
found numerically; a critical index S for the total bandwidth is determined. After deriving 
recursion relations for the trace of transfer matrices, it is shown that generalised Fibonacci 
chains have the same energy spectrum if and only if they are locally isomorphic. The other 
potential is sinusoidal, for which the critical index 8 is determined at the critical point. 

1. Introduction 

There has been much interest (Hofstadter 1976, Andre and Aubry 1980, Kohmoto et 
al 1983 and references therein, Thouless 1983, Ostlund et a1 1983, Ostlund and Pandit 
1984, Wilkinson 1987) in a tight-binding model with the Schrodinger equation: 

Y,,,+l+Y,,,-,+ V(mw)Y, , ,  =EYm 

V ( t + l ) =  V ( t ) .  

This is the Schrodinger equation for an electron on a one-dimensional lattice with a 
periodic site potential. Here m labels the lattice site and E is the energy. The relation 
between the nature of the wavefunctions and the character of the energy spectrum has 
been studied for a number of models. If w is rational, say w = p / q ,  p and q being 
relatively prime integers, the eigenspectrum consists of q bands and all eigenfunctions 
are extended. If w is irrational, the question arises: what is the nature of the spectrum? 
The potential V( m u )  = A tan(2v[mw - v]) gives localised states for ‘typical’ irrational 
w, and the bands for w = p/q have widths proportional to e-y4,  as q + 00 (Grempel et 
a1 1982). An analytic weak potential V ( m w )  gives extended states for almost every 
irrational w (Bellissard et a1 1983). Rational w = p/q give bandwidths proportional 
to q- l ,  as q -, 00 (Kohmoto et a1 1983). 

Kohmoto et a1 (1983) studied the case of a step potential: 

V,  for --w < t s -w3  I V, for --w3 < t s w 2  
V( t )  = 

where w = (A- 1)/2 is the inverse of the golden mean. 
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Because the bandwidths were proportional to q-( '+ ' ) ,  S > 0, the states were believed 
to be neither localised nor extended. This has been proven for certain values of I V, - Vll 
(Casdagli 1986, Delyon and Petritis 1986, Suto 1987). Kohmoto et al (1983) analysed 
the problem also by means of a mapping problem, making use of a recursion relation 
for the traces of transfer matrices. 

The case V (  t )  = A cos(2rr)  has been studied extensively as well. With this choice 
of the potential, the model is self-dual, since the Fourier coefficients of the wavefunc- 
tions qm obey the same equation, with different coefficients, as the Y,,,. For w = 
(A- 1)/2, Kohmoto (1983) compared A = 1.98, 2.00 and 2.02. From the spectrum, 
the states turned out to be extended for A = 1.98, critical for A = 2.00 and localised for 
A =2.02, in agreement with Andre and Aubry (1980) and Avron and Simon (1983). 

Now w = (d- 1)/2 belongs to the family of positive solutions of the following 
quadratic equation: 

4 ' + n 4 = 1  ( 2 )  

with n a positive integer. Positive solutions are: 4 = ( 4 ( n 2 + 4 )  - n)/2. These 4 can 
be rewritten as a continued-fraction expansion: 

4 = l / ( n + l / ( n + .  ..). ..)>. (3) 
For n = 1, 4 is the inverse of the golden mean. 

The purpose of this paper is twofold. The first aim is to treat the localisation 
problem for general n. For the step potential and for the potential V (  t )  = A cos(27it), 
the values n = 1, 2, 3, 4 are studied. For each n, energy spectra for systematic 
commensurate approximants are calculated. The description of the models is given 
in § 2. Numerical results for the total bandwidth and for scaling properties are presented 
in 0 3. The second aim is to relate energy spectra of generalised Fibonacci chains (in 
particular, the step potential case) and the concept of local isomorphism (note that 
generalised Fibonacci chains can be considered as one-dimensional quasicrystals). 
Levine and Steinhardt (1986) argue that quasicrystals have the same diffraction pattern 
and the same free energy if and only if they belong to the same local isomorphism 
class. It will be studied whether generalised Fibonacci chains (not) belonging to the 
same local isomorphism class, have the same (a  different) energy spectrum. Section 
4 contains (the derivation of) recursion relations for the traces of transfer matrices, 
which will be useful in the following section. In § 5, for a given arbitrary generalised 
Fibonacci chain, we will study which set of chains belongs to the same local isomorph- 
ism class and which set of chains has the same energy spectrum as the given one. 
Comparison of the two sets yields the answer on the relation between energy spectra 
and local isomorphism. 

2. Transfer matrix formulation of the model 

First, write the Schrodinger equation (1) in terms of transfer matrices as 

Notice that the matrices M ( t )  are periodic in t with period 1 and that det M (  t )  = 1. 
Lattice sites m and m + k can be related by repeating the procedure given in (4): 

M ' k ' ( m 4 ) e ,  = em+k ( 5 )  
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where M ( k ' ( t )  is defined recursively by 

M ( k ~ + k ? ' (  t )  = MIkl'(t  f k24)M'k2' (  t )  

and M"'( r )  = M (  t ) ,  Rational approximants can be achieved by cutting off the con- 
tinued-fraction expansion (3) after 1 steps: 

1 / ( n 1 + l / ( n 2 +  . . .+  l / n l )  . . . ) )  n ,  =.  . .=  n ,  = n. ( 7 )  

Equation ( 7 )  can be rewritten in the form: 4 / = q I - , / q , ,  where q, are generalised 
Fibonacci numbers; qr obey the recursion relations 

q/+1 = nq/ + 4,-I qo= 1 q1= n. (8) 

For these rational values dr = q l - , / q l ,  energies are allowed (forbidden) if ITr[ M'ql'( t ) ]1 
is less than (greater than) two. 

In working out the models for the two types of potentials, the further approach is 
different, so they will be treated separately. 

2.1. The step potential 

The model can be described as follows. The site potential V (  m4) can take two values: 
Vo and VI. Consider a structure consisting of atoms of type A (then V ( m 4 )  = V , )  
and of type B (then V ( m + )  = Vo) on sites m ( m  = 0, 1 , 2 , .  . .). For a generalised 
Fibonacci chain, the potential V( m4) can be constructed as follows. We consider 
sequences of symbols A, B. Starting with sequence So = B at site m = 0 corresponding 
to Vo, S ,  = AB"-' at sites m = 0, .  . . , ( n  - 1 )  corresponding to V , ,  Vo, . . . , Vo, the 
juxtaposition rule is 

s k + l  = sZsk-1 k 3 1 .  ( 9 )  

Note that the number of atoms after each step Sk is q k ,  and the atoms are put on sites 
m = 0, . . . , (qk - 1). A commensurate approximant is achieved by cutting off the con- 
struction after 1 steps and constructing a periodic structure with unit cell s, at sites 
m = 0, 1 , 2 , .  . . ; 4 is replaced by +/. Energies are allowed if ITr[M'q~'(0)]1s2 (for 
convenience, t is put equal to zero). Tr[ M'ql'(0)] can be calculated by using a recursion 
relation for Mk = M ' 4 k ' ( ~ )  ( k  3 0), after defining 

ProoJ: MO corresponds to So = B + MO = M B .  M ,  corresponds to SI =AB"-' + 
M ,  = M'ql ' (0)  = M'"'(0)  = M ( ( n  - l ) & ) .  . , M ( 0 )  = M ; - ' M A .  M 2  corresponds to 
S2= S;So + M 2 =  ,4f(q2'(0) = M(q~+"qi) (0) = M ' q O ' ( n q l ~ r ) M ' " q ~ ' ( 0 )  = M B ( M i - l M A ) " =  
M O M ; .  Equation ( 9 )  leads directly to (10) because M k  corresponds to the reverse of 
S,  for each k. 

Note that (10) also holds for the incommensurate limit (then the proof goes with 4 
instead of 41) .  Equation ( 1 0 )  holds for general S o ,  S , ,  with M O ,  M ,  corresponding 
to the reverse of So, S ,  respectively. Energies are allowed (forbidden) if (Tr M,I is less 
than (greater than) two. 
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2.2. The sinusoidal potential 

We now consider the potential V( t )  = A c o s ( 2 ~ t ) .  For rational approximants 4, = 
q1- , /q l ,  Tr( M'41'( t ) )  has to be calculated. Taking t equal to zero, M'41'(0) has the form 
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3. Spectra and scaling 
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For the step potential and for a fixed value of n, the energy spectra can be calculated 
for various commensurate approximants 4l = q l - , /q l  with help of (10). In all calcula- 
tions, V, = - V, = 0.6 in (10). 

Figure l ( a )  shows the energy bands for n = 2, 1 = 1 ,  2, 3; and in figure l ( b )  the 
middle bands for 1 = 3 ,  4 ,  5 are plotted. 

% 

c Y 

g 0 2 -  

0 1 -  

I 1 '  

0 5  
( b l  

I 
I j 

I 
I 

I 
i 

0 -  
1 

Figure 1. Allowed energies for the step potential, n = 2, V, = - V ,  = 0.6; ( a )  gives the bands 
for I = 1 ,  2, 3; ( b )  gives the middle bands for I = 3, 4, 5 .  

Comparing l ( a )  and l ( b ) ,  one sees that the spectrum for 4l appears in the spectrum 
for d,+* in a rescaled version, given by the scaling parameter a. The greater the values 
of 1, the more the scaling parameter a converges (for the middle bands and the middle 

For n = 1 and n = 3 ,  scaling is found by comparing 4, and 41+3 and for n = 2 and 
n = 4, 4l and 41+2 are compared. This is related to the fact that, for n odd, every third 
generalised Fibonacci number is even and, for n even, every second generalised 
Fibonacci number is even. 

Table 1 shows the values of the scaling parameter a for n = 1, 2, 3, 4; a has been 
calculated by comparing values of 1 up to 1 = 21, 17, 1 3 ,  1 1  for n = 1 ,2 ,  3 , 4  respectively. 

gaps). 
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Table 1. Scaling parameter c1 and critical index 6 of the step potential and sinusoidal 
potential for n = 1 ,  2, 3, 4. 

Step potential Sinusoidal potential 

n a s a s 
1 5.618+0.008 0.354 f 0.005 14.0*0.1 1 .OO * 0.01 

8.77 * 0.05 0.349 * 0.002 39.7 * 0.2 1.00 * 0.01 2 
1280*30 1.00*0.01 3 80.3 f 0.5 0.340 f 0.003 

0.328 * 0.002 950* 10 1 .00 f 0.01 4 47.3 f 0.3 

For the sinusoidal potential, scaling is found at A = 2.00 but scaling does not appear 
at A = 1.98 and A =2.02. Figure 2 shows the spectrum for 1 = 1,  2, 3 (figure 2(a ) )  and 
the middle bands for 1 = 3, 4, 5 (figure 2( b ) )  for n = 2 and A = 2.00, the self-dual point. 
In table 1 the values of the scaling parameter a of the middle bands and middle gaps 
for n = 1,  2, 3, 4 are given. For n = 1 ,  2, 3, 4 values of 1 up to 1 = 21, 10, 7, 6 were 
compared respectively. 

Another quantity is the total bandwidth BI as a function of different approximants 
= qr - l / q ,  and fixed n. For the step potential, BI is found numerically to go down 

as: BI = c[q, ] - ' ,  as q, + 03, in all cases n = 1 ,  2, 3, 4, each with its own value of c and 
6. In the incommensurate limit, the wavefunctions seem to be critical: they are neither 
localised nor extended, according to Grempel et a1 (1982) and Kohmoto er a1 (1983). 
In table 1 ,  the values of 6, called the critical index of total bandwidth, are given for 
n = 1 ,  2, 3, 4. 

For the sinusoidal potential, at A = 2.00, B, once again decreases as B, = c[q, ] - ' ,  
as qr + 03, in all cases n = 1,  2, 3, 4. The values of 6 are given in table 1 for n = 1,  2, 
3, 4. Surprisingly, 6 is the same for each n = 1,  2, 3, 4. All cases n = 1,  2, 3 ,  4 give 

3 0  

2 0  

1 0  

2. i o  
w 

- 1  0 

- 2  0 

-3 0 
1 2 3 

L 
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I b l  
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Figure 2. Allowed energies for the sinusoidal potential, n = 2, A = 2.00; ( a )  shows the 
spectrum for I = 1, 2, 3; ( b )  shows the middle bands for I = 3,4, 5. Notice that the middle 
band for I = 3 consists of two bands that touch each other. 
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the same picture for A = 1.98 and h = 2.02: log B, goes down faster than linearly to 
zero as a function of 1 for A = 2.02, log B, goes down slower than linearly to its 
asymptotic value as a function of 1 for A = 1.98, as qr -f 00. 

4. Recursion relations 

In order to treat the spectral problem for n = 1 ,  Kohmoto et a1 (1983) converted (10) 
into a recursion relation for xk =Tr (Mk) :  X k + l =  X k - I X k  -xk-2,  and constructed a 
three-dimensional mapping operator T If rk = (xk,  xk-1, xk-2), then rk+' = Trk = 

( X k - I X k  -xk-2, xk, X k - l ) .  Starting with Ixo( c 2 and lxll s 2,  an energy has escaped, once 
and j X k + l l  are greater than two. Gumbs and Ali (1988) derived similar recursion 

relations for n = 2, 3 and Holzer (1988a, b) derived recursion relations for general n. 
The author derived similar recursion relations for general n independently. Since they 
will be of use in 0 5 ,  a short proof will follow below. 

Taking (10) as the starting point, it holds that 

Mk+ 1 + [ Mk -21-' = Mk - 1 [ Mk 1 + Mk - I 1  " [ Mk I - ' .  ( 1 2 )  

Using the relations: 

T r ( A B )  +Tr(AB- ' )  =Tr (A)Tr (B)  

Tr( A B )  = Tr( B A )  

directly yields 

T r ( A )  = Tr(A- ' )  if det A = det B = 1 
(13)  

for every matrix A, B 

Tr( h f k - l [  Mk] ) = Tr( Mk - 1 [ Mk] "- ' )Tr  Mk - Tr( Mk-l[ Mk] m - 2 )  (14a)  

Tr( [ k f k  - 11 [ Mk]-  ' ) = Tr( [ Mk - 1 ] - ' [ Mk] - I )  Tr Mk - I - Tr( [ Mk - -'[ Mk]- ' ( 14 b ) 

Defining 

X (  k )  = Tr( Mk) y ( k  m) =Tr(Mk-l[Mklm) 

equations ( 1 2 )  and (14a, b )  can be rewritten as 

x ( k +  1 )  = y ( k ,  n - l ) x ( k )  - y ( k ,  n - 2 ) +  z ( k ,  n - l ) x ( k -  1 )  - z ( k ,  n - 2 )  - x ( k - 2 )  

y ( k  m ) = y ( k ,  m - l ) x ( k ) - y ( k ,  m - 2 )  

z (  k, m ) = z( k, m - 1 ) x (  k - 1 )  - z (  k, m - 2 ) .  

Substituting m = n in the last relation and using z( k, n )  = x (  k - 2 )  yields: x (  k - 2 )  = z(  k, 
n - l ) x ( k  - 1 )  - z ( k ,  n -21, so that the resulting recursion relations become 

z ( k ,  m )  =Tr([Mk-iI"[Mk]- ' )  

x (  k + 1 ) = y ( k, n - 1 )x( k )  - y ( k, n - 2 )  (15a)  

Y ( k ,  m ) = y ( k , m - 1 ) x ( k ) - y ( k ,  m - 2 )  (15b) 

with initial conditions: x ( 1 )  = Tr(M, ) ,  x(0) = Tr(Mo) ,  y ( 0 ,  n - 1 )  = Tr(M,[M,]- ' ) .  
With help of the relations y ( k , O ) = x ( k - 1 ) ,  y ( k , - l ) = y ( k - 1 , n - 1 ) ,  all x ( k )  can be 
calculated. 



Energy spectra for t D quasiperiodic potentials 3213 

Essentially, the recursion relations ( 1 5 )  are relations between variables of the form 
x(  k , )  and y (  k2, n - l ) ,  as becomes clear by calculating the recursion relations for n = 1, 
2, 3: 

n = 1 :  

n = 2: 

x ( k +  1)  = x(k - l )x(k)  -x(k-2)  

x ( k +  1 )  =y(k, l )x(k)  -x(k - 1 )  

~ ( k ,  l ) = x ( k  - l )x(k)  - y ( k -  1 , 1 )  

(16) 

(17) 

n = 3: x(k+  1)  = y(k, 2)x(k) -x(k - l )x(k)  +y(k -  1,2) 

y (  k, 2) =x(k  - 1)[x(k)l2 - y ( k  - 1,2)x(k) -x(k - 1 ) .  (18)  

We define y ( k ) = y ( k ,  n-1)  and rk=(x(k) ,  x(k-1) ,  y ( k - 1 ) ) .  Analogously to the 
n = 1 case, a three-dimensional mapping operator T can be defined with rk+, = Trk = 
( x ( k + l ) ,  x(k) ,  y(k)).  The x ( k + l ) ,  y(k)  are calculated according to (15 ) .  There 
exists an invariant: 

(19) 

for each k 2 1.  The proof goes by induction to k. Therefore, for general n, the mapping 
is on a two-dimensional manifold. 

- 4 + x (  ~ c ) ~ + x (  k - 1)2+y(k - 1)*  - X (  k)x(k - l )y(k - I )  = ( VI - Vo)2 

5. Spectra and local isomorphism 

Up to now, energy spectra were discussed in relation to the nature of the electronic 
states. Another question is whether there is a relation between energy spectra of 
generalised Fibonacci chains, and the concept of local isomorphism. 

Definition. Two n-dimensional structures are locally isomorphic if and only if every 
sphere in one structure can be mapped on a sphere with the same radius and the same 
contents in the other structure by a translation and/or an orthogonal transformation. 

For two generalised Fibonacci chains this means that two chains are locally 
isomorphic if and only if every sequence in one chain can be mapped on the same 
sequence in the other chain by a translation and/or an inversion. 

( a l , .  . . , b, = 0 , 1 , .  . .) 
Consider an arbitrary generalised Fibonacci chain, as in 0 2: 

so = A Q ~ B ~ ,  . . . . A Q ~ ~ ~ B ~ , , ,  

SI = A'lBdl . . . ACpBdr (Cl,. . . , d, =o, 1,. . .) (20) 
Sk+l= SZSk-1 ( k 2  1 ) .  

The infinite chain is referred to as S, = limk+, Sk. According to 0 2, the energy spectrum 
for a commensurate approximant S, consists of energies for which ITr M,I 6 2, where 
M, is determined by the procedure: 

M 0- - Mbv~Mam €3 A . . . Mb,'M: M~ = ~ 2 ~ 2 . .  . ~ 3 ~ 2  
(21) 

Mk+ 1 = Mk- 1 M i .  

In the following, for a given chain S,, the set of chains will be determined, which is 
locally isomorphic to S,, and the set which has the same energy spectrum as S,. 
Comparison of the two sets will provide the relation between energy spectrum and 
local isomorphism. 
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5.1. Locally isomorphic structures 

In order to determine all T,  which are locally isomorphic to a given S, ,  two lemmas 
will be useful. First, some notation is introduced. With T,, a structure is meant which 
is constructed in the same way as S ,  (see equation (20)), but with ( T o ,  T I )  # (So, SI). 
For given Sk, s', means the reverse of sk (for example: if Sk = A " B ~ ,  then s', = BbA").  
For given s k ,  let E be a product of A atoms and B atoms. Then ESkE-' is said to be 
a positive product if ESkE-' does not contain A' or B' with i < 0 ( E - ' :  if, for example, 
E = A"Bb, then E-' = B-'A-").  Note that E is not necessarily a positive product. 

Lemma 5.1. For given S, ,  let T,  be such that To= ESoE-I, T I  = ES,E-'  with the 
restriction on E, that To,  TI be positive products. 

Then S ,  and T, are locally isomorphic and 

Tk = ESkE-' k==O ( 2 2 )  

Proof: (i)  Equation (22) is evident for k = 0, 1. 
(ii) Suppose (22) holds for k - 1,  k Then Tk+, = TiTk- ,  = (ESkE- ' )nESk-lE-I  = 

ES;Sk-,E-'  = ESk+,E-'. Since s k  and Tk differ by the same set of finite sequences 
at the edges for each k, the two infinite sequences are locally isomorphic. 

Lemma 5.2. For given S,,  let T, be such that To = SL, T I  = Si. Then S ,  and T, are 
locally isomorphic and: 

The rather lengthy proof is given in appendix 1. Now all T, can be determined, which 
are locally isomorphic to a given S,. 

Theorem 5.3. For given S,,  the structures T,  which are locally isomorphic to S ,  are 
of one of the following forms: 

( a )  To= ES,E-', TI=ES,+,E-' m a 0  (24a 1 
( b )  To= ESLE- ' ,  T I  = ES',+,E-' m a 0  (24b) 

( c )  so = ET,E - I ,  s, = ET,,, E - I  m>O (24c) 

( d )  so= E T L E - ' ,  s, = ET',+,E-' m>O (24d) 

with E an arbitrary product of A atoms and B atoms, such that To,  TI are positive 
products. 

For the proof, see appendix 2. 

5.2. Structures with the same energy spectrum 

The next question is: for given S, ,  which T, have the same energy spectrum as 
S,? The spectrum for S, consists of energies, for which llimk+, x(k ) l  s 2 (see 0 2); 
x ( k )  =Tr(Mk)  where Mk and Sk are related according to (20) and (21). The spectrum 
for T,  consists of energies for which Ilimk+, x'( k)l d 2; x'( k )  = Tr( ML), where ML 
and Tk are related according to (20) and (21). First, for given S, ,  the structures T, 
of form ( a ) - ( d )  in theorem 5.3 will be proven to have the same spectrum as S, .  The 
following lemma will be useful. 
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Lemma 5.4. If x ’ ( 0 )  = x ( O ) ,  x’(  1 )  = x (  l ) ,  y’(0,  n - 1 )  = y ( 0 ,  n - l ) ,  then S ,  and T, have 
the same energy spectrum. 

Proof: According to the recursion relations ( 1 5 ) ,  the starting conditions for x ( k )  are 
x(O) ,  x ( l ) ,  y ( 0 ,  n - 1 ) ;  for x ’ ( k )  they are x’(O), x ’ ( l ) ,  y’(0, n - 1 ) .  If the starting 
conditions are the same, then x’( k )  = x (  k )  for each k and limk-,, x’( k )  = limk-,, x (  k ) .  
Thus S ,  and T, have the same spectrum. 

Theorem 5.5. For given S,: S, and the locally isomorphic structures T, in (24) of 
theorem 5.3, have the same energy spectrum. 

For the proof, see appendix 3. 

The final step is to prove that the T, in (24) of theorem 5.3 are the only structures 
having the same energy spectrum as S,. Two lemmas will be useful. 

Lemma 5.6. For arbitrary S, and Tk (with corresponding x (  I)  = Tr( M I ) ,  x’(  k )  = Tr( M ; )  
respectively) the energy spectrum is the same if and only if x (  I )  = x ’ ( k ) .  

Proof: The ‘if’ part is trivial. 
For the ‘only if’ part: in order to get the same spectrum, SI and Tk must contain 

the same number of atoms (since the number of bands equals the number of atoms), 
say s/. Then x (  I) and x’( k)  are both polynomials in E of order sI.  In order to have 
the same spectrum, 2sI  points (E, x ( l ) ( E ) ) ,  (E, x ’ ( k ) ( E ) )  must be the same. Since a 
polynomial of order sI is completely determined by sI + 1 points and since sI 2 1, the 
polynomials x ( I )  and x ’ ( k )  must be the same. 

In order to formulate the following lemma, we introduce some notation. Let sk be the 
number of atoms contained in S k  ; so so, sI is the number of atoms in S o ,  Si respectively 
and sk+l= nsk + Sk-1; note that sk = qk, defined in (8), if so = 1 ,  sl = n. Similarly, s i  is 
the number of atoms contained in Tk. Let aP(  p )  denote a polynomial of order p with 
highest-order coefficient a :  a P ( p )  = a E P  + O ( < p ) .  

Lemma 5.7. For S ,  and T, (with corresponding x (  k )  = Tr( Mk), x’(  k) = Tr( M ; )  
respectively) with S k  = s i  for each k, then it holds for each k > 1: 

( a )  if x ’ ( O ) = x ( O ) ,  x ’ ( l ) = x ( l ) ,  y’(0,  n - l ) = y ( O ,  n - l ) - ~ - ~ P ( p - ~ ) ,  then: 



3216 F Wijnands 

Now, for a given S, ,  the structures T ,  can be determined, which have the same 
spectrum as S,. In order to have the same energy spectrum for S ,  and T,, it must 
hold that Iim,+, x ( k )  = limk+, x ' ( k )  with x ( k ) ,  x ' ( k )  being polynomials of order s,, 
s; respectively in E. Then there must be a t E Z, such that limk+= [ x ' (  k )  - x (  k + t ) ]  = 0. 
This means that s; = S k + t  for min(k, k +  t )  L O .  Since limk+, Sk = limk+, Sk+,, we can 
start with So, SI ,  To,  T I  such that so = $A, s1 = si. We now assume (assumption 1) that, 
if an  M E N  can be found such that x ' ( k ) - x ( k ) = f ( k ) P ( s , - M )  for each k, with 
limk+,f( k) # 0, then lim,+, x (  k )  # limk+, x'(  k ) .  

Consider, for given S,,  a chain T,, with sk = s; for each k. Let y ' (0 ,  n - 1) = 

y ( 0 ,  n - 1) - a - , P ( p - , ) ,  x ' ( 0 )  = x ( 0 )  - a o P ( p o ) ,  x' (  1 )  = x (  1) - a lp (  p , ) .  Then, according 
to lemma 5.7 

x'( k )  - x ( k )  = qk -,[a- 1 P (  p -  1 - SO - + sk ) - aOP ( PO - SO + s k  1 - q k -  I  a1 P (  p I - SI + sk 
where only the highest-order terms count. Then x ' ( k )  - x (  k )  =f(k)P(max[  p-I - so- sI  , 
po  - so, p 1  - s,] + s,). Now the question is, whether limk+,f( k )  # 0. First note that, if 
we are in case (a ) ,  ( b )  or (c)  of lemma 5.7 ,  then lim,+,f(k) = W. For combinations 
of these cases, choose So, SI ,  T o ,  T I  such that S - , ,  T-*, S - ,  , T-,  are positive products. 
Then the a-, term does not provide the highest-order term: p - ,  - so - s, < min( po - so, 
p ,  - 3,). Then lim,+,f(k) = 0 only if p o -  so = p ,  - s, and if limk+m [qk-*a0+ qk- ,a l l  = 
O+ a, = -4ao. If V,, VI are rational, then a,, a ,  are rational, and lim,,,f(k) =m. 
For given C, D being products of M A  matrices and MB matrices: if Tr C = Tr 0, then 
D = ECE-' or D = EC'E-' with E being a product of MA matrices and  MB matrices. 
Argument: write D =  PCQ (such P, Q can always be found). We now assume the 
following expression to hold (assumption 2): Tr D = Tr( PCQ) = Tr( CQP) # Tr C if 
P f Q-' since Tr C will then be a different polynomial in E than Tr D. Analogously, 
after noting that Tr C = Tr( C') due to theorem 5 .5 ,  Tr( PC'Q) # TrC if P # Q-' (this 
is made plausible below theorem 5.8). 

Theorem 5.8. For rational Vo, V I ,  for given S,:  the T,  which have the same energy 
spectrum as S, are exactly the T, in (24) of theorem 5.3 .  

Boo$ Suppose T,  has the same energy spectrum as S, .  Then T,  must be of one of 
the following forms, due  to assumption 1 and  2 :  

( a )  To= ES,E-', T I  = FSm+IF-'  m 2 O  

( b )  T,= E S L E - ' ,  T, = FS',+,F-' m 2 O  

( c )  So = ET,E-', SI = F-l  m>O 

( d )  So= E T L E - ' ,  S I  =FT',+,F-' m > 0. 

The final step is to prove that E = F. The proof will be given for case ( a ) ;  the proof 
for the other cases goes analogously. Define U ,  by: U, = S, ,  U ,  = S,,,,, , Uk+,  = 
Ul: U,-'. Then U, = S, .  Thus T, and U, must be proven to have the same spectrum, 
where To = EUoE-I, T I  = FU, F-I.  Let x (  k )  = Tr( Mk) and x ' ( k )  = Tr( Mk) correspond 
to Uk and Tk respectively. Then MA= MEIMOME,  MI = M;IMIMF. Since then 
x'(0) = x(O) ,  x ' ( 1 )  = x ( l ) ,  it must hold that y ' (0 ,  n - 1) =y(O,  n - l ) ,  due  to lemma 5 .7 .  
Thus Tr(MI(Mb)- ' )  =Tr(MIMo')-*Tr(M;'MIMFME'Mo'ME) =Tr(M,M;'). The 
same argument as in assumption 2 yields: ME = M, + E = F. 

The statement that the T, of form ( a )  have the same spectrum as S ,  according to 
theorem 5.5 completes the proof. 
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It can be proven that theorem 5.8 also holds (1imk+-f(k) # 0) for Vo, V,  not both 
rational, except for the following case (if it exists!). 

(1) Let sl, = Sk+r  for each k, for certain t (otherwise S ,  and T, will not have the 
same spectrum due to assumption 1); 

(2) choose So, SI, To,  T ,  such that t = 0 and S - 2 ,  T -2 ,  S - ,  , T-, are positive products; 
(3) a , = - 4 a o  and p o - s o = p l - s , ;  
(4) for each k, Sk and Tk contain the same number of atoms of type A (thus also 

of type B, since s k  = s i ) :  suppose sk = s;; S,, Tk contain A k ,  Al, atoms of type A 
respectively, Ak # AL. Then x'(k) -x(k)  = ( A ;  - A k ) (  Vo- v l ) P ( s k  - 1); 

( 5 )  for each k, Sk and Tk are of the form: s k =  EA"lBbl . .  . A " j B b ~ E - ' ,  Tk=  
FA'lBdl . . . A'J Bdl.F-' with j = j ' ,  where E, F are products of A atoms and B atoms: 
suppose Ak = A ; ,  j # j ' .  Then x'(k) -x(k)  = ( j ' - j ) (  vo- V,)'P(Sk -4).  

Comparing theorems 5.3 and 5.8 leads to the conclusion that two generalised Fibonacci 
chains constructed by juxtaposition have the same energy spectrum if and only if they 
are locally isomorphic (except for the case mentioned below theorem 5.8, for which 
it is not known). The proof of theorem 5.3 shows that, if S ,  and T, are locally 
isomorphic, then there is a m E H  such that the commensurate approximants Tk and 
Sk+,,, differ by a constant finite sequence at the edges for each k, or such that Tk and 
the reverse of Sk+, differ by a finite sequence for each k (constant for each even k, 
and constant for each odd k), for k large enough. 

6. Conclusions 

For the step potential, for which the system is critical in the incommensurate limit, 
and for the A = 2 case of the sinusoidal potential, a scaling parameter [Y and a critical 
index for the total bandwidth 8 is determined for n = 1,2 ,3 ,4  and the total bandwidth 
goes down as c [  qr]-', where qr is the number of bands. For the step potential, recursion 
relations for general n have been derived to treat the spectral problem by means of a 
mapping problem. Generalised Fibonacci chains are found to have the same energy 
spectrum if and only if they are locally isomorphic (except for one case, for which it 
is not known). It has been shown how two locally isomorphic chains are related. 
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Appendix 1. Proof of lemma 5.2 

Proof by induction. Define U ,  by: U,= S o =  Ti,  U ,  = S1 = TI, U,+,= uk-1 U ;  (the 
juxtaposition rule for U, is different from the rule for Sk, T k ) .  
Then 

(i)  U2(SISO) = S2 

(ii) (SlS0)-' U3(SO&) = S3 

(iii) (SISo)-' U, U, = (SOSl)-' U, U,. 
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Appendix 2. Proof of theorem 5.3 

For given S,, define U, by: U, = Sm, UI = Sm+, , m 5 0,  U,+,= U ;  u k - 1 .  Then u k  = 
s k + m  for each k and U,= S,. 

( a )  Then T,, given by To= EUoE-'= ESmE-', T I  = E U I E - ' =  ESm+lE-l ,  is 
locally isomorphic to S, according to lemma 5.1 and 

Tk = ESk+,E-' ka0. (A2.1) 

( b )  Then T,, given by To= EU;E-'= ES',E-', TI = E U ; E - ' =  ES',+lE-', is 
The only restriction on E is that To, T I  be positive products. 

locally isomorphic to S, according to lemmas 5.1, 5.2 and 

( s m s m  + 1 ) - I  E ( E - I  '( s m  + 1 s m  = s k  + m 

( Sm + I Sm ) - ' E r  T;( E - ' )  '(Smsm + 1 ) = s k +  m 

k even 

k odd. 
(A2.2) 

The restriction on E is that To,  T I  be positive products. 
( c )  For given S,: if positive products To, T I  can be found such that So = ET,E-', 

SI = ETm+, E-' for certain E and m > 0, then S, and T,  are locally isomorphic and 

s k  = ETk+,E-' k a 0 ,  m > 0 .  (A2.3) 
( d )  Analogously, for given S,: if positive products To,  T I  can be found, such that 

So=  E T k E - ' ,  S I  = ETL+IE- '  for certain E and m >O, then S, and T, are locally 
isomorphic and 

(TmTm+l)- lErS~(E- l )r (Tm+l Tm) = Tk+m k even 

( T m + l T m ) - l E r s ~ ( E - l ) r ( T m T m + l )  = Tk+m k odd. 
(A2.4) 

The next step is to prove that there are no other structures T,, which are locally 
isomorphic to a given S,. 
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(U )  Without inversion. With help of the relation Sk-1  = s;"sk+,, SI can also be defined 
for 1 < 0, if SI is a positive product. Let p E Z be such that S, is a positive product for 
1 a p ,  and Sp-l is not. Take an arbitrary T, and write: TI = DS,+,C, where t + 1 is the 
largest integer for which SI+ ,  is included in Tl (so C, D are positive products). If Sp+l 
is not included in TI, then write t = p (then C, D are not both positive products). 

At first, sequences Tk and ETkE-' (k 3 0) will not be distinguished. Later on, this 
possibility of getting locally isomorphic chains (according to lemma 5.1) will be taken 
into account. Since we do not distinguish between Tk and CTkC-' ( k  2 0) at this stage, 
write: TI= CDS,,,. Then CD must be a product of sequences S, and S,+l: T:= 
CDS,+,CDS,+, occurs in T,. Now S, can be considered as built up out of S,, 
s,+,, occurring as powers St. Then Tl=(S,+l)y or TI= 
(Sf+l) '~Sl(Sr+l) '~. .  . (S,+l)'h-iS,(S,+l)'k. Since t +  1 is the largest integer for which S f + ,  
is included in TI, it holds that 

TI = (s,+l)y 1 < y s n  (A2.5) 
or 

TI= ( & + I ) ' 1 s r ( s t + 1 ) ' 2  i l S n - l ,  1 G i 2 S n .  

n = 1. TI = S,+,  or TI = S,S,+, . Suppose TI = S,S,+,. Since we do not distinguish 
between Tk and s;'T,S, (kaO) at this stage, we may write: T~ = S;'S,S,+,S, = s,+,s, = 
S,+2. Due to the fact that t + 1 is the largest integer for which S,+,  is included in TI, 
it holds that TI = Sr+,.  The next step is to prove that To = S f .  T:ToT: = (S l+ , )2To(SI+I )2  
occurs in T,. In order to be locally isomorphic to S,, it must hold that 

i,, . . . , ik = 1,2. 
In the latter case, i ,  = ik = 2, because TOT, To occurs in T,. Also ToT:To occurs in T,, 
which means that (S,+1)2S,( S,+,)'S,( S,+l)z occurs; this sequence does not occur in S,. 
so T , = S , + , ,  To=&. 

n >  1. Suppose TI = (Sr+l)'1St(S,+l)'2 (see (A2.5)). Now T;+' occurs in T,. Since 
n > 1 ,  Sf(Sr+~)"~""S~(S,+~)" '+ '"S~ occurs. This sequence only occurs in S, when 
i l  + i2 = n. Write TI = (Sl+l)("-')S,(Sr+l)' ( i  2 1 ) .  Since we do not distinguish between 
Tk and (st+l)'Tk(sr+l)-' (ka0) at this stage, Write TI = (Sr+,)"SI = S,+,. Since 
t + 1 was the largest integer for which Sf+, is included in TI, TI must be ( S f + l ) y ,  
1 s  y s n .  Now T ;  occurs in T,. Since St+, occurs only as power (S,+J" or 
(SI+,)"+'  in S,, it must hold that y = 1: TI = S I + , .  The next step is to prove that To= S,. 
Now T;+'ToT; = (S,+,)"+'TO(S,+,)" and T ~ T o T ; + '  = (S,+l)"To(S,+l)"+l occurs in 
T m ,  which yields: To= S, or To= S,(S,+,)'l . . . ( S , + J g k S , ;  i l  = ik = n ;  i 2 , .  . . , ik - l  = n, 
n +  1 .  In the latter case, make use of the fact that (TYT,)" occurs in Tm and 
that, if [(S,+,)"~lS,][(S,+l)nS,]'[(S,+l)n~lS,] occurs in S,,  then i =  n or n - 1. This 
means that To must be of this kind 

To= S, or To= S,(Sl+l)'i . . . (Sf+l)'kS, 

TO = S, [ ( st+, )"Sr I ( - ' - J ~ ) E  ( st+ 1 " + I  st I[ ( sr + 1 ) "sr I J I  * [ ( S,+ 1 ) "s, 3 '1 

x [ ( s,+ 1 ) " + s, I[ ( st + 1 )"St 1' 
with i 2 1 ,  jl , . . . , j ,  = n, n - 1 and j o  = 1, 2. Now T;+l To occurs in T,. In order to be 
locally isomorphic to S,, it must hold that n - i - j o  = n or n - 1 + i s 0. Since i a 1, 
T, and S, cannot be locally isomorphic. So TI = SI+,, To= S,. 

Combining these results with lemma 5.1 gives, as a conclusion, that the Tm which 
are locally isomorphic to Sm, without taking inversion into account, are of the form 
(A2.1) (ra0)  or (A2.3) ( t < O ) .  
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(b) With inversion. Lemma 5.2 tells us that, with Uo= sk, U1 = Si, u k + l  = U;Uk-,, 
every finite sequence in S ,  occurs in the reverse of U, and vice versa. So the task is 
to search for T, such that every sequence in T, occurs in U, and vice versa. Part 
( a )  of the proof showed that, in order to get locally isomorphic chains T, and U, 
without taking inversion into account, it must hold that To = FU,F-', TI = FU,,, F- ' ,  
which means that the T,, which are locally isomorphic to S,, taking inversion into 
account, are of the form (A2.2) or (A2.4). 

Appendix 3. Proof of theorem 5.5 

Suppose To = ES,E-', TI = E S , + I E - ' ;  then we are in cases ( a )  ( t  2 0) and (c )  ( t  < 0) 
of theorem 5.3. Say U,= ESoE-', U ,  = ESIE-' ,  Uk+l= U :  Uk-1. Then U, = T,, since 
limk,, ESkE- '=l imk+m ESk+,E-'. So we have to prove that U, and S, have the 
same spectrum. 

Let E, S,, uk correspond to M E ,  Mk, M ;  respectively according to (20) and (21). 
Then Mb= M; 'MOME,  M',  = M ; l M I M E .  With use of the relation Tr(CD) =Tr(DC)  
for arbitrary C, 0, this directly yields: x'(0) = x(O), x'( 1) = x( l ) ,  y ' (0 ,  n - 1) = 
y ( 0 ,  n - 1). Using lemma 5.4, U, and S,  have the same spectrum, thus T, and S,  
have the same spectrum. Suppose To= ES:E-', T, = ES:+,E-'. Then we are in cases 
( b )  ( t s 0 ) a n d  ( d )  ( t < O )  oftheorem5.3. Say Vo= E-'T0E =S: ,  V,=E- 'T,E=S:+, ,  
Vkil = V :  Vk-1.  Then V, and T, have the same spectrum according to the proof above. 
So the next step is to prove that V, and S, have the same spectrum. Say U, = S , ,  
U ,  = S I + ,  , Uk', = U ;  Uk-1. Then U, = s,. We have to prove that U, and V,  have 
the same spectrum (note that Vo= U:, VI = U ; ) .  

Tr(Mo), ( 2 )  Tr(M;) =Tr(M,) ,  (3) Tr[MI(M;)-'] =Tr[MIM;l]. The relations ( l ) ,  (2), 
(3) hold if Tr( C) = Tr( C') for arbitrary C = M: . , . M >  ( a d , .  . . , b, E Z). The proof 
goes by induction. First, Tr(C) = Tr( C') for C = M2M, ' ,  C = M a i M b ' M a 2  B A ,  C = A 

M > M 2 M 2  for all a , ,  a 2 ,  b l ,  b,EZ, by using (13). The induction step: suppose 
Tr( 

T r ( M 2 . .  . M ~ ~ ~ M > )  

Let Mk, M ;  correspond to U,, v k  respectively. It must hold that: ( 1 )  Tr(M;)= 

. . . M 2 )  = Tr( M 2  . . . M 2 ) .  Then 

= Tr(M2 . . . M:.-l)Tr(M%"ML**) -Tr(M: . . , M g , , v - ~ - b , , , ) M - a , , , )  A 

- - Tr(Mb"'-l B . . . M:)Tr(Mb,"'M%") -Tr(MAalllM(Bb,,,-I-b,,,), . , M 2 )  

= T r ( M k M 2  , . . M 2 )  

because of the induction assumption and with use of (13). 

Appendix 4. Proof of lemma 5.7 

First, note that x'( k) and x( k) are polynomials with highest-order term E 'A. The proof 
will be given for ( 2 5 a ) .  The other two cases go analogously. The cases n = 1 and 
n > 1 are treated separately. Suppose x'(0) = x(O), x'( 1 )  = x( l ) ,  y'(0,  n - 1) = 
y(0 ,  n - 1) - U - ~ P ( ~ - , ) .  The task will be to find the highest-order term of the difference 
polynomial y'(  k - 1, n - 1) - y (  k - 1, n - 1) and x'( k) - x( k). By 'lower-order terms' 
will be meant terms which do not contribute to the highest-order term. 
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n = 1. For n = 1 ,  y ( 0 ,  n - 1 )  = x ( - 1 ) ,  y ' (0 ,  n - 1 )  = x ' ( -1 ) .  

x ' ( 2 )  = x ' ( 0 ) x ' ( 1 ) - x ' ( - 1 )  

= x ( O ) x ( l )  - [ x ( - 1 )  - a - , P (  p-,)I = x ( 2 ) +  a- ,P(  p - , )  

x ' ( 3 )  = ~ ' ( 1 ) x ' ( 2 ) - x ' ( O ) = x ( 1 ) [ x ( 2 ) + a - , P ( p - , ) ] - x ( O )  

= x ( 3 )  + a - , P ( p - ,  + s,) = x ( 3 )  + a - , P ( p - ,  -so-  s, + s3) 
x ' ( 4 ) = ~ ' ( 2 ) ~ ' ( 3 ) - x ' ( l ) = .  . . = x ( 4 ) + a - , P ( p - , - s o - s , + s 4 ) .  

The induction step: suppose (25a)  holds for k -  1 ,  k - 2 ,  k - 3 .  Then (25a)  also holds 
for k. Proof by using x'( k )  = x'( k - 2)x'(  k - 1 )  - x'( k - 3 )  and substituting the terms 
on the right-hand side with help of the induction assumptions. 

n >  1. 

y'(  1 ,  n - 1 )  = y'(  1 ,  n - 2)x ' (  1 )  - y ' (  1, n - 3 )  

= [ y ' ( l ,  O ) x ' ( l ) - y ' ( 1 ,  -l)][~'(l)]"-~+lower-order terms 

= [ x ' ( O ) x ' ( l )  -y'(O, n - l)][~'(l)]"-~+lower-order terms 

= y (  1 ,  n - 1 )  + a - l P (  p - ,  + ( n  - 2 ) s 1 )  

x ' ( 2 )  = y ' (  1, n - l ) x ' ( l )  - y ' ( l ,  n - 2 )  

= x ( 2 ) + a - , P ( p - , + ( n - l ) s I )  

= x ( 2 )  + qoa-,P( p - ,  -so-  s, + s2); 

y ' (2 ,  n - l ) = y ' ( 2 ,  n - 2 ) x r ( 2 ) - y ' ( 2 ,  n - 3 )  

= [x ' (  1 )x ' (2 )  -y ' ( l ,  n - 1 ) ] [ ~ ' ( 2 ) ] " - ~ +  lower-order terms 

= y ( 2 ,  n - 1 ) +  a - , P ( p - ,  + n s , + ( n  - 2 ) s 2 )  

+ ( n  - 2 ) a - ,  P(  p - ,  + ns, + ( n  - 2)s2 )  

= v ( 2 ,  n - I ) +  (SI - qo)a- ,P(p- ,  - so-s,  +s3-s2); 

x ' ( 3 ) = y ' ( 2 ,  n - l ) x ' ( 2 ) - y ' ( 2 ,  n - 2 )  

= x (  3 )  + q ,  a - ,  P(  p- , - so - s, + s3). 

The induction step: suppose (25a)  holds for y ( k - 2 ,  n - l ) ,  x ( k - 2 ) ,  x ( k -  1 ) .  Then 
( 2 5 a )  also holds for y ( k  - 1 ,  n - l ) ,  .x (k)  by using the relations 

y ' ( k -  1 ,  n - l ) = y ' (  k - 1 ,  n - 2 ) x ' ( k  - 1 )  - y ' ( k -  1 ,  n - 3 )  

= [ x r ( k - 2 ) x ' ( k  - 1 )  - y ' ( k  - 2 ,  n - l ) ] [ x ' ( k -  l)]"-2+lower-order terms; 

~ ' ( k )  =y ' (  k - 1 ,  n - l ) x ' (  k - 1 )  - y ' (  k - 1 ,  n - 2 )  

and using the induction assumptions. 
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